32 and Konner is right please
f(x) = 4x - x^2
1)
f(4) = 4(4) - 4^2 = 16 - 16 = 0
f(-4) = 4(-4) - (-4)^2 = -16 - 16 = -32
f(4) - f(-4) = 0 - (-32) = 32
2)
f(3/2) = 4(3/2) - (3/2)^2
f(3/2) = 6 - 9/4 = 15/4
√f(3/2) = √(15/4) = √15 / 2
3)
f(x + h) = 4(x + h) - (x + h)^2
= 4x + 4h -(x^2 + 2xh + h^2)
= 4x + 4h -x^2 - 2xh - h^2
f(x - h) = 4(x - h) - (x - h)^2
= 4x - 4h -(x^2 - 2xh + h^2)
= 4x - 4h -x^2 + 2xh - h^2
So
[f(x + h) -f(x - h) ] / 2h
= [4x + 4h -x^2 - 2xh - h^2 - ( 4x - 4h -x^2 + 2xh - h^2 )] / 2h
=( 4x + 4h -x^2 - 2xh - h^2 - 4x + 4h + x^2 - 2xh + h^2 ) / 2h
= (8h - 4xh) / 2h
= 2h(4 -2x) / 2h
= 4 - 2x
Answer: [f(x + h) -f(x - h) ] / 2h = 4 - 2x
Answer:
x = 1
y = 3
Step-by-step explanation:
<h2>
<em><u>Substitution Method</u></em><em><u>:</u></em></h2>
Step 1:
Name The Equation
4x + y = 7 ...(1)
3x + 2y = 9 ...(2)
Step 2:
From Equation (1) we get,
4x = 7 - y
i.e.,
x = 7 - y/4
Step 3:
Substitute the value of <em><u>x = 7 - y/4</u></em> in equation (2)
i.e.,
3(7 - y/4) + 2y = 9
21 - 3y/4 + 2y = 9
21 - 3y + 8y/4 = 9
21 - 3y + 8y = 9 * 4
21 + 5y = 36
5y = 36 - 21
5y = 15
y = 15/5
<em><u>y = 3</u></em>
Step 4:
Substitute the value of <em><u>y = 3</u></em> in equation (1)
4x + y = 7
i.e.,
4x + (3) = 7
4x + 3 = 7
4x = 7 - 4
4x = 4
x = 4/4
<em><u>x = 1</u></em>
<h2><em><u>Verification</u></em><em><u>:</u></em><em><u> </u></em></h2>
4x + y = 7 i.e., <em>4(1) + (3) = 7</em>
3x + 2y = 9 i.e., <em><u>3(1) + 2(3) = 9</u></em>
Answer: IT EQUALS 2
Step-by-step explanation: