If the numbers after the decimal terminate, yes, it's rational.
9.521521521 = 9,521,521,521 / 1,000,000,000
If they don't terminate, but the pattern continues (which I suspect is the case here), yes, it's still rational.
If <em>x</em> = 9.521521521…, then
1000<em>x</em> = 9521.521521521…
Subtract <em>x</em> from this to eliminate the fractional part:
1000<em>x</em> - <em>x</em> = 9521.521521521… - 9.521521521…
999<em>x</em> = 9512
<em>x</em> = 9512/999
If they don't terminate, but the pattern does <em>not</em> continue, meaning the next few digits could be something random like
9.521521521<u>19484929271283583457</u>…
then the number would be irrational.
Answer:
The zeros of the function are;
x = 0 and x = 1
Step-by-step explanation:
The zeroes of the function simply imply that we find the values of x for which the corresponding value of y is 0.
We let y be 0 in the given equation;
y = x^3 - 2x^2 + x
x^3 - 2x^2 + x = 0
We factor out x since x appears in each term on the Left Hand Side;
x ( x^2 - 2x + 1) = 0
This implies that either;
x = 0 or
x^2 - 2x + 1 = 0
We can factorize the equation on the Left Hand Side by determining two numbers whose product is 1 and whose sum is -2. The two numbers by trial and error are found to be -1 and -1. We then replace the middle term by these two numbers;
x^2 -x -x +1 = 0
x(x-1) -1(x-1) = 0
(x-1)(x-1) = 0
x-1 = 0
x = 1
Therefore, the zeros of the function are;
x = 0 and x = 1
The graph of the function is as shown in the attachment below;
Answer:
The answer is C: 35°
Step-by-step explanation:
The sum of all angles in a triangle is 180°
So, 180°-(60°+85°)
= 180°-145°
= 35°
m∠L = 35°
Hope it helps!