Answer:
Rectilíneo generalmente indica una figura representativa de hacer una línea recta oa lo largo de una línea recta o en una línea recta. En términos matemáticos, es una figura plana delimitada por segmentos de línea. En otras palabras, una figura plana totalmente compuesta de segmentos de línea se conoce como figura rectilínea. Ahora bien, si te preguntas ¿qué es una figura plana? Entonces, sepa que cuando ponemos la punta de un lápiz en una hoja de papel y nos movemos de un punto a otro, sin levantar el lápiz, entonces las formas que se forman son lo que llamamos curvas planas.
<span>1. </span><span>Original ratio of the bike and
scooter is equals to :
=> 3 : 4, where 3 is the bike and 4 is the scooter
=> 48 bikes
=> original order = 64 scooter
=> 64 / 4 = 16
however, bike is more popular than scooter, so they changed it into new ratio:
=> 5 : 2 , where 5 is equals to bikes and 2 is equals to scooter.
=> 5 x 16 = 80 bikes
=> 2 x 16 = 32 scooter.</span>
Answer:
70
Step-by-step explanation:
Answer:

Step-by-step explanation:

: Do cross multiplication

: Multiply the numbers : 4 and 14

Move 3 to right hand side and change it's sign

Subtract 3 from 56

The value of k is 53
Hope I helped!
Best regards! :D
~TheAnimeGirl
Part I
We have the size of the sheet of cardboard and we'll use the variable "x" to represent the length of the cuts. For any given cut, the available distance is reduced by twice the length of the cut. So we can create the following equations for length, width, and height.
width: w = 12 - 2x
length: l = 18 - 2x
height: h = x
Part II
v = l * w * h
v = (18 - 2x)(12 - 2x)x
v = (216 - 36x - 24x + 4x^2)x
v = (216 - 60x + 4x^2)x
v = 216x - 60x^2 + 4x^3
v = 4x^3 - 60x^2 + 216x
Part III
The length of the cut has to be greater than 0 and less than half the length of the smallest dimension of the cardboard (after all, there has to be something left over after cutting out the corners). So 0 < x < 6
Let's try to figure out an x that gives a volume of 224 in^3. Since this is high school math, it's unlikely that you've been taught how to handle cubic equations, so let's instead look at integer values of x. If we use a value of 1, we get a volume of:
v = 4x^3 - 60x^2 + 216x
v = 4*1^3 - 60*1^2 + 216*1
v = 4*1 - 60*1 + 216
v = 4 - 60 + 216
v = 160
Too small, so let's try 2.
v = 4x^3 - 60x^2 + 216x
v = 4*2^3 - 60*2^2 + 216*2
v = 4*8 - 60*4 + 216*2
v = 32 - 240 + 432
v = 224
And that's the desired volume.
So let's choose a value of x=2.
Reason?
It meets the inequality of 0 < x < 6 and it also gives the desired volume of 224 cubic inches.