Given :
Nathan smiled at 50 people one day and recorded that 36 people smiled back at him.
To Find :
How many people should Nathan expect to return a smile if he smiles at 650 people over a period of time.
Solution :
Ratio of people smiled by total number of people is :
![R = \dfrac{36}{50}](https://tex.z-dn.net/?f=R%20%3D%20%5Cdfrac%7B36%7D%7B50%7D)
Now, it is given that we have to use the given conditions.
Therefore, ratio will be same :
![\dfrac{s}{650}=\dfrac{36}{50}\\\\s = \dfrac{36}{50}\times 650\\\\s = 468](https://tex.z-dn.net/?f=%5Cdfrac%7Bs%7D%7B650%7D%3D%5Cdfrac%7B36%7D%7B50%7D%5C%5C%5C%5Cs%20%3D%20%5Cdfrac%7B36%7D%7B50%7D%5Ctimes%20650%5C%5C%5C%5Cs%20%3D%20468)
Therefore, number of smiles Nathan expect to return is 468.
Im not smart im not that sure of my answer but 23.3
Answer:
![6000(cm)^{3}](https://tex.z-dn.net/?f=6000%28cm%29%5E%7B3%7D%20)
Step-by-step explanation:
![30 \times 10 \times 20](https://tex.z-dn.net/?f=30%20%5Ctimes%2010%20%5Ctimes%2020)
![300 \times 20](https://tex.z-dn.net/?f=300%20%5Ctimes%2020)
![6000(cm)^{3}](https://tex.z-dn.net/?f=6000%28cm%29%5E%7B3%7D%20)
<h3>Hope it is helpful...</h3>
∡b is a vertical angle to ∡a and therefore a twin, and we know that ∡a = 120°, thus since ∡b = ∡a, ∡b = 120° as well.
a full circle has a total of 360°, ∡d and ∡c are vertical angles, namely two angles across from each other at a junction, and therefore ∡d = ∡c.
∡a + ∡b is 120° + 120° thus 240°, since a circle has a total of 360°, 360 - 240 = 120, so the other two angles pick up that slack and divide it among each other evenly, 120/2 = 60, so ∡d = ∡c = 60°.
First of all we will understand the question!!
<em>The</em><em> </em><em>question</em><em> </em><em>is</em><em> </em><em>saying</em><em> </em><em>that</em><em> </em><em>you</em><em> </em><em>are</em><em> </em><em>given</em><em> </em><em>a</em><em> </em><em>function</em><em> </em><em>and</em><em> </em><em>you</em><em> </em><em>have</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>x</em><em> </em><em>which</em><em> </em><em>will</em><em> </em><em>give</em><em> </em><em>the</em><em> </em><em>maximum</em><em> </em><em>profit</em><em>.</em><em>.</em><em>.</em><em> </em><em>Lets</em><em> </em><em>solve</em><em> </em><em>it</em><em> </em><em>by</em><em> </em><em>finding</em><em> </em><em>the</em><em> </em><em>extrema</em><em> </em><em>using</em><em> </em><em>the</em><em> </em><em>vertex</em>
<em>
</em>
- <u>Identify the coefficients a and b of the quadratic function</u>
<em>
</em>
- <u>Since a<0, the function has the maximum value at x, calculated by substituting a and b into x=-b/2a</u>
<u>
</u>
- <u>Solve</u><u> </u><u>the</u><u> </u><u>equation</u><u> </u><u>for</u><u> </u><u>x</u><u> </u>
<u>
</u>
- <u>The maximum of the quadratic function is at </u><u>x</u><u>=</u><u>3</u>