Let us observe the given figure,
When two lines intersect each other, the angles opposite to each other are Vertically Opposite Angles. Vertically opposite angles are always equal in measure.
As, we can observe that the given lines intersect each other, and they form vertically opposite angles as
and ![\angle POS , \angle ROQ](https://tex.z-dn.net/?f=%5Cangle%20POS%20%2C%20%5Cangle%20ROQ)
Therefore, ![\angle POR = \angle SOQ](https://tex.z-dn.net/?f=%5Cangle%20POR%20%3D%20%5Cangle%20SOQ)
Substituting the given measures of the angles, we get
![91-x^\circ = x+ 7^\circ](https://tex.z-dn.net/?f=91-x%5E%5Ccirc%20%3D%20x%2B%207%5E%5Ccirc)
![91-7 = x + x](https://tex.z-dn.net/?f=91-7%20%3D%20x%20%2B%20x)
![84 = 2x](https://tex.z-dn.net/?f=84%20%3D%202x)
![x = \frac{84}{2}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B84%7D%7B2%7D)
So, x = ![42^\circ](https://tex.z-dn.net/?f=42%5E%5Ccirc)
Since, the measure of angle POR = ![(91-x)^\circ](https://tex.z-dn.net/?f=%2891-x%29%5E%5Ccirc)
= ![(91-42)^\circ](https://tex.z-dn.net/?f=%2891-42%29%5E%5Ccirc)
= ![49^\circ](https://tex.z-dn.net/?f=49%5E%5Ccirc)
Therefore, the measure of angle POR is 49 degrees.
Answer:
4
Step-by-step explanation:
7*7-9*5
49-45
4
Given that the cubical piece has side (s) 7 mm, and a cylindrical hole of diameter (d) as 3 mm.
The volume of the piece can be calculated as,
![\begin{gathered} \text{Volume of piece}=\text{ Volume of cube}-\text{ Volume of cylinder} \\ V=s^3-\frac{\pi}{4}d^2s \\ V=7^3-\frac{\pi}{4}(3)^2(7) \\ V=343-\frac{63\pi}{4} \\ V\approx293.52mm^3 \\ V\approx293.52\times10^{-9}\text{ }m^3 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctext%7BVolume%20of%20piece%7D%3D%5Ctext%7B%20Volume%20of%20cube%7D-%5Ctext%7B%20Volume%20of%20cylinder%7D%20%5C%5C%20V%3Ds%5E3-%5Cfrac%7B%5Cpi%7D%7B4%7Dd%5E2s%20%5C%5C%20V%3D7%5E3-%5Cfrac%7B%5Cpi%7D%7B4%7D%283%29%5E2%287%29%20%5C%5C%20V%3D343-%5Cfrac%7B63%5Cpi%7D%7B4%7D%20%5C%5C%20V%5Capprox293.52mm%5E3%20%5C%5C%20V%5Capprox293.52%5Ctimes10%5E%7B-9%7D%5Ctext%7B%20%7Dm%5E3%20%5Cend%7Bgathered%7D)
It is mentioned that the material costs $207 per cubic meter, so the cost (c) of 1 piece is calculated as,
![\begin{gathered} \text{Cost of 1 piece}=\text{ Cost per unit volume}\times\text{ Volume of 1 piece} \\ c=207\times293.52\times10^{-9} \\ c\approx60758.64\times10^{-9} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctext%7BCost%20of%201%20piece%7D%3D%5Ctext%7B%20Cost%20per%20unit%20volume%7D%5Ctimes%5Ctext%7B%20Volume%20of%201%20piece%7D%20%5C%5C%20c%3D207%5Ctimes293.52%5Ctimes10%5E%7B-9%7D%20%5C%5C%20c%5Capprox60758.64%5Ctimes10%5E%7B-9%7D%20%5Cend%7Bgathered%7D)
This is the cost (in dollars) for 1 piece.
Given that the manufacturer wants to produce 1,000,000 such pieces, so the total cost (TC) is calculated as,
![\begin{gathered} \text{Total Cost}=\text{ Cost per piece}\times\text{ No. of pieces} \\ TC=60758.64\times10^{-9}\times1,000,000 \\ TC=60758.64\times10^{-9}\times10^6 \\ TC=60758.64\times10^{-3} \\ TC=60.75864 \\ TC\approx60.75 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ctext%7BTotal%20Cost%7D%3D%5Ctext%7B%20Cost%20per%20piece%7D%5Ctimes%5Ctext%7B%20No.%20of%20pieces%7D%20%5C%5C%20TC%3D60758.64%5Ctimes10%5E%7B-9%7D%5Ctimes1%2C000%2C000%20%5C%5C%20TC%3D60758.64%5Ctimes10%5E%7B-9%7D%5Ctimes10%5E6%20%5C%5C%20TC%3D60758.64%5Ctimes10%5E%7B-3%7D%20%5C%5C%20TC%3D60.75864%20%5C%5C%20TC%5Capprox60.75%20%5Cend%7Bgathered%7D)
Thus, the total prototypes will cost around $60.75
Answer:
ok brainliest pls
Step-by-step explanation:
Answer:
The number of cookies in the jar is 7.
If we include the 5 cookies from the tray in the jar the total number of cookies would be 5 + 7 = 12
Step-by-step explanation:
<em>Consider the number of cookies in the jar as 'x'. Hence the equation formed would be:-</em>
7(x) + 5 = 54
7x + 5 = 54
7x = 54 - 5
7x = 49
x = ![\frac{49}{7}](https://tex.z-dn.net/?f=%5Cfrac%7B49%7D%7B7%7D)
x = 7
The number of cookies in the jar is 7.
If we include the 5 cookies from the tray in the jar the total number of cookies would be 5 + 7 = 12
<em>Hope this helps.</em>