Hello there!
The statement that would NOT be true would be option A. All isosceles triangles are also equilateral triangles. The rest of the statements would be TRUE.
Hope this helps and have a great day! :)
Answer:
The expected monetary value of a single roll is $1.17.
Step-by-step explanation:
The sample space of rolling a die is:
S = {1, 2, 3, 4, 5 and 6}
The probability of rolling any of the six numbers is same, i.e.
P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 
The expected pay for rolling the numbers are as follows:
E (X = 1) = $3
E (X = 2) = $0
E (X = 3) = $0
E (X = 4) = $0
E (X = 5) = $0
E (X = 6) = $4
The expected value of an experiment is:

Compute the expected monetary value of a single roll as follows:
![E(X)=\sum x\cdot P(X=x)\\=[E(X=1)\times \frac{1}{6}]+[E(X=2)\times \frac{1}{6}]+[E(X=3)\times \frac{1}{6}]\\+[E(X=4)\times \frac{1}{6}]+[E(X=5)\times \frac{1}{6}]+[E(X=6)\times \frac{1}{6}]\\=[3\times \frac{1}{6}]+[0\times \frac{1}{6}]+[0\times \frac{1}{6}]\\+[0\times \frac{1}{6}]+[0\times \frac{1}{6}]+[4\times \frac{1}{6}]\\=1.17](https://tex.z-dn.net/?f=E%28X%29%3D%5Csum%20x%5Ccdot%20P%28X%3Dx%29%5C%5C%3D%5BE%28X%3D1%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D2%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D3%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%2B%5BE%28X%3D4%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D5%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D6%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%3D%5B3%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B4%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%3D1.17)
Thus, the expected monetary value of a single roll is $1.17.
Find the area of the base
.
Multiply area of the base by height to get volume

Hope this helps.
Answer:
x=2
Step-by-step explanation:
log_x(y)+log_x(z)=log_x(yz), so logb(x-1) + logb(x+2)=logb((x-1)(x+2)). next subtract logb(8-2x) from both sides to get logb((x-1)(x+2))-logb(8-2x)=0. log_x(y) - log_x(z) = log_x(y/z). so now we have logb((x-1)(x+2)/(8-2x)). now you can put it into exponential form: (x-1)(x+2)/(8-2x)=b^0=1 now just solve for x:
(x-1)(x+2)= 8-2x, x^2 + x -2 = 8-2x, x^2 + 3x -10 = 0, (x+5)(x-2)=0 x=-5, x=2. plug both into the original equation to check which one is correct, since log_x(y) can't have a negative y, x=-5 doesnt work