I don't know what is the correct answer
Answer:
qn 10. 15mn² - 23m²n +4m³
Step-by-step explanation:
1. distribute 4m through the parenthesis
8mn² - 12m²n + 4m³ - 2n(5m² - 3nm) + nm(n-m)
2. use the commutative property to reorder the terms
8mn² - 12m²n + 4m³ - 2n(5m² - 3mn) + mn(n - m)
3. distribute -2n through the remaining parenthesis
8mn² - 12m²n + 4m³ -10m²n + 6mn² + mn² - m²n
4. collect like terms
8mn² + 6mn² + mn² - 12m²n - 10m²n - m²n + 4m³
5. complete bodmas
15mn² - 23m²n +4m³
that's is how you do it so the answer is
15mn² -23m²n + 4m³
Answer:
(6,2)
Step-by-step explanation:
all steps are shown and pictured
The average value of f over the region D is 243/4
To answer the question, we need to know what the average value of a function is
<h3>What is the average value of a function?</h3>
The average value of a function f(x) over an interval [a,b] is given by

Now, given that we require the average value of f(x,y) = 3xy over the region D where D is the triangle with vertices (0, 0), (1, 0), and (1, 9).
x is intergrated from x = 0 to 1 and the interval is [0,1] and y is integrated from y = 0 to y = 9
So, ![\frac{1}{b - a} \int\limits^b_a {f(x,y)} \, dA = \frac{1}{1 - 0} \int\limits^1_0 \int\limits^9_0 {3xy} \, dxdy \\= \frac{3}{1} \int\limits^1_0 {x} \,dx\int\limits^9_0 {y} \,dy\\ = \frac{3}{1} [\frac{x^{2} }{2} ]^{1}_{0}[\frac{y^{2} }{2} ]^{9}_{0} \\= 3[\frac{1^{2} }{2} - \frac{0^{2}}{2} ] [\frac{9^{2} }{2} - \frac{0^{2}}{2} ] \\= 3[\frac{1}{2} - 0 ][\frac{81}{2} - 0 ]\\= \frac{81}{2} X3 X \frac{1}{2} \\= \frac{243}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bb%20-%20a%7D%20%5Cint%5Climits%5Eb_a%20%7Bf%28x%2Cy%29%7D%20%5C%2C%20dA%20%3D%20%5Cfrac%7B1%7D%7B1%20-%200%7D%20%5Cint%5Climits%5E1_0%20%5Cint%5Climits%5E9_0%20%7B3xy%7D%20%5C%2C%20dxdy%20%5C%5C%3D%20%5Cfrac%7B3%7D%7B1%7D%20%5Cint%5Climits%5E1_0%20%7Bx%7D%20%5C%2Cdx%5Cint%5Climits%5E9_0%20%7By%7D%20%5C%2Cdy%5C%5C%20%3D%20%20%5Cfrac%7B3%7D%7B1%7D%20%5B%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B2%7D%20%5D%5E%7B1%7D_%7B0%7D%5B%5Cfrac%7By%5E%7B2%7D%20%7D%7B2%7D%20%5D%5E%7B9%7D_%7B0%7D%20%20%5C%5C%3D%203%5B%5Cfrac%7B1%5E%7B2%7D%20%7D%7B2%7D%20-%20%5Cfrac%7B0%5E%7B2%7D%7D%7B2%7D%20%5D%20%5B%5Cfrac%7B9%5E%7B2%7D%20%7D%7B2%7D%20-%20%5Cfrac%7B0%5E%7B2%7D%7D%7B2%7D%20%5D%20%5C%5C%3D%203%5B%5Cfrac%7B1%7D%7B2%7D%20-%200%20%5D%5B%5Cfrac%7B81%7D%7B2%7D%20-%200%20%5D%5C%5C%3D%20%20%5Cfrac%7B81%7D%7B2%7D%20X3%20X%20%5Cfrac%7B1%7D%7B2%7D%20%5C%5C%3D%20%20%5Cfrac%7B243%7D%7B4%7D)
So, the average value of f over the region D is 243/4
Learn more about average value of a function here:
brainly.com/question/15870615
#SPJ1
<u>ANSWER: </u>
The solution of the two equations 2x+3y=5 and 4x - y=17 is (4, -1).
<u>SOLUTION:
</u>
Given, two linear equations are 2x + 3y = 5 → (1) and 4x – y = 17 → (2).
Let us first solve the above equations using <em>elimination process.
</em>
For elimination, one of the coefficients of variables has to be same in order to cancel them.
Now solve (1) and (2)
eqn (1)
2 → 4x + 6y = 10
eqn (2) → 4x – y = 17
(-) ----------------------------
0x + 7y = -7
y = -1
Substitute y value in (2)

So, solution of two equations is (4, -1).
<u><em>Now let us solve using substitution process.</em></u>
Then, (2) → 4x – y = 17 → 4x = 17 + y → y = 4x – 17
Now substitute y value in (1) → 2x + 3(4x – 17) = 5 → 2x + 12x – 51 = 5 → 14x = 5 + 51 → 14x = 56
x = 4
Substitute x value in (2) → y = 4(4) – 17 → y = 16 – 17 → y = -1
Hence, the solution of the two equations is (4, -1).