Answer:
The maximum distance traveled is 4.73 meters in 0.23 seconds.
Step-by-step explanation:
We have that the distance traveled with respect to time is given by the function,
.
Now, differentiating this function with respect to time 't', we get,
d'(t)=9.8t-2.3
Equating d'(t) by 0 gives,
9.8t - 2.3 = 0
i.e. 9.8t = 2.3
i.e. t = 0.23 seconds
Substitute this value in d'(t) gives,
d'(t) = 9.8 × 0.23 - 2.3
d'(t) = 2.254 - 2.3
d'(t) = -0.046.
As, d'(t) < 0, we get that the function has the maximum value at t = 0.23 seconds.
Thus, the maximum distance the skateboard can travel is given by,
.
i.e.
.
i.e.
.
i.e.
.
i.e. d(t) = 4.73021
Hence, the maximum distance traveled is 4.73 meters in 0.23 seconds.
Answer:
9,4,0,1
Step-by-step explanation:
They give you different values for the X so all you have to do is plug in the X to the different equations
There are three elements in that set.
Answer:
(18, ∞)
Step-by-step explanation:
(18, ∞) is the only option that works. if we ignore the "greater than" sign, and just set the function equal to -12, we see that x-10=-12 would give us x=-2. If we plug in -3 for x, we get -13, which is less than -12. if we plug in -1 for x, we get -11, which is greater than -12. Therefore, with the function only having one critical point (zero), we know that every value greater than -2 is a solution. Technically, the full solution would be (-2, ∞). however, the only answer available meeting the criteria would be (18, ∞).