Sin51=y/12
y=12sin51 units
y≈9.33 units (to nearest hundredth of a unit)
...
tanα=12/5
α=arctan2.4°
α≈67.38° (to nearest hundredth of a degree)
...
tan13=x/24
x=24tan13 units
x≈5.54 units (to nearest hundredth of a unit)
...
sin20=10/x
x=10/sin20 units
x≈29.24 units (to nearest hundredth of a unit)
Answer: 30 m ; (or, write as: "30 meters") .
______________________________________________
Explanation:
____________________
Area of a trapezoid, "A" = (1/2) ( b₁ + b₂) h ;
______________________________________________
or, write as: A = ( b₁ + b₂) h / 2 ;
___________________________________
in which: A = area;
b₁ = length of "base 1" (choose either one of the 2 (two bases);
b₂ = length of "base 2" (use the base that is remaining);
h = height of trapezoid;
____________________________________________
From the information given:
___________________________
A = 100 m² ;
h = 5 m
b₁ = 10 m
b₂ = x
___________________________
Find "x", which is: "b₂" ;
__________________________
A = ( b₁ + b₂) h / 2 ;
_____________________________
Plug in our known values; and plug in "x" for "b₂" ; and solve for "x" ;
_________________________________________________________
100 m² = [(10m + x) (5m)] / 2 ; Solve for "x" ;
_________________________________________________________
(10m + x) (5m) = (2)* (100m²) ;
_________________________________________________________
(5m) (10m + x) = 200 m² ;
___________________________________________
Note: The distributive property of multiplication:
____________________________________________
a(b+c) = ab + ac ;
a(b−c) = ab <span>− ac ;
</span>____________________________________________
We have: (5m) (10m + x) = 200 m² ;
____________________________________________
So: (5m) (10m + x) = (5m*10m) + (5m * x) ;
= 50m² + (5m)x ;
_______________________________________________
→ 50m² + (5m)x = 200m² ;
_______________________________________________
Divide the ENTIRE equation by "5m" ;
_______________________________________________
→ { 50m² + (5m)x } / 5m = (200m² / 5m) ;
_______________________________________________
→ 10m + x = 40m ;
________________________________________________
Now, subtract "10m" from EACH side of the equation; to isolate "x" on one side of the equation; and to solve for "x" ;
_______________________________________
→ 10m + x − 10m = 40m − 10m ;
to get:
→ x = 30 m ; which is our answer.
___________________________________________________
Answer: 30 m ; (or, write as: "30 meters") .
_____________________________________________________
To find a perimeter, add all sides together:
9) 12 + 12 + 8 + 8 = 20 + 20 = 40 in
10) 3 + 3 + 3 + 3 = 6 + 6 = 12 cm
To find area, multiply length and width, or base and height:
11) 3 x 6 = 18
12) 10 x 30 = 300 ft
13) 12 x 12 = 144 cm
14) 7 x 4 = 28 m
15)
Perimeter: 2(2) + 2(16) = 4 + 32 = 36
Area: 1 x 16 = 16
hope this helps
A - 3b = 4
a = b -2
(b - 2) - 3b = 4
b - 2 - 3b = 4
-2b = 4 + 2
-2b = 6
b = 6/-2
b = -3
a = b - 2
a = -3 -2
a = -5
to check: a = -5 ; b = -3 ⇒ (-5,-3)
a - 3b = 4
-5 - 3(-3) = 4
-5 + 9 = 4
4 = 4
Answer:
Option B
Step-by-step explanation:
f(t) = 5000
g(t) = 250t
h(t) = f(t) + g(t) = 5000 + 250t
After 5 years, the amount of money in the account is:
h(t = 5) = 5000 + 250(5) = 5000 + 1250 = 6250$