Answer:
Th Range is [0, -∞)
Step-by-step explanation:
f(x) = 2 - x
w(x) = x - 2
We want to find the range of (f * w)(x).
First, we need to find (f * w)(x), which is the multiplication of the function f(x) and the function w(x). Lets use algebra to find (f * w)(x):

This is a quadratic function (U shaped), or a parabola. The graph is attached.
The range is the set of y-values for which the function is defined.
We see from the graph that the parabola is upside down and the highest value is y = 0 and lowest goes towards negative infinity. So the range is from 0 to negative infinity. Or,
0 < y < ∞
In interval notation, that would be:
[0, -∞)
Answer: 64 miles
Step-by-step explanation:
Subtract all of Buck's expenses from the total amount that he spent to isolate the amount of miles.
70.23 (Total) - 39.95 (Flat Rate) - 9.80 (Gas) = 20.48
20.48 ÷ 0.32 (Cost Per Mile) = 64 (Total miles)
Hope this helps!
This question is incomplete
Complete Question
Consider greenhouse A with floor dimensions w = 16 feet , l = 18 feet.
A concrete slab 4 inches deep will be poured for the floor of greenhouse A. How many cubic feet of concrete are needed for the floor?
Answer:
96 cubic feet
Step-by-step explanation:
The volume of the floor of the green house = Length × Width × Height
We convert the dimensions in feet to inches
1 foot = 12 inches
For width
1 foot = 12 inches
16 feet = x
Cross Multiply
x = 16 × 12 inches
x = 192 inches
For length
1 foot = 12 inches
18 feet = x
Cross Multiply
x = 18 × 12 inches
x = 216 inches
The height or depth = 4 inches deep
Hence,
Volume = 192 inches × 216 inches × 4 inches
= 165888 cubic inches
From cubic inches to cubic feet
1 cubic inches = 0.000578704 cubic foot
165888 cubic inches = x
Cross Multiply
x = 16588 × 0.000578704 cubic foot
x = 96 cubic feet
Therefore, 96 cubic feet of concrete is needed for the floor
The American Opportunity Tax Credit is a tax credit to help pay for education expenses paid for the first four years of education completed after high school. You can get a maximum annual credit of $2,500 per eligible student and 40% or $1,000 could be refunded if you owe no tax.