1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill [66]
3 years ago
9

Hey! i’ll give brainliest help thanks

Mathematics
2 answers:
Doss [256]3 years ago
5 0

Answer:

incorrect because essential means important

valkas [14]3 years ago
4 0
The answer to this is A
You might be interested in
How do I turn those numbers into a mixed number?
BigorU [14]
Number 2 is already a mixed number. But it says mixed number as a decimal. So -1 29/40 as a decimal is -1.725.
8 0
3 years ago
Here is a clue about a secret number:
NeX [460]
It is not a multiple of 8
7 0
3 years ago
Find the area between y = 8 sin ( x ) y=8sin⁡(x) and y = 8 cos ( x ) y=8cos⁡(x) over the interval [ 0 , π ] . [0,π]. (Use decima
Marina86 [1]

Answer:

0.416 au

Step-by-step explanation:

Let y1=8sin(x) and y2=8cos(x), we must find the area between y1 and y2

\int\limits^\pi _0{(8cos(x)-8sin(x))} \, dx = 8\int\limits^\pi _0{(cos(x)-sin(x))} \, dx =\\8(sin(x)+cos(x)) evaluated(0-\pi )=\\8(sin(\pi )-sin(0))+8(cos(\pi )-cos(0))=\\8(0.054-0)+8(0.998-1)=8(0.054)+8(-0.002)=0.432-0.016=0.416

3 0
3 years ago
Nine less than a number is 9. Find the number.
astraxan [27]
I'm guessing it is 18. 18 decreased by nine equals nine so to me it makes sense.
3 0
3 years ago
Read 2 more answers
A county environmental agency suspects that the fish in a particular polluted lake have elevated mercury levels. To confirm that
suter [353]

Answer:

a. The 95% confidence interval for the difference between means is (0.071, 0.389).

b. There is enough evidence to support the claim that the fish in this particular polluted lake have signficantly elevated mercury levels.

c. They agree. Both conclude that the levels of mercury are significnatly higher compared to a unpolluted lake.

In the case of the confidence interval, we reach this conclusion because the lower bound is greater than 0. This indicates that, with more than 95% confidence, we can tell that the difference in mercury levels is positive.

In the case of the hypothesis test, we conclude that because the P-value indicates there is a little chance we get that samples if there is no significant difference between the mercury levels. This indicates that the values of mercury in the polluted lake are significantly higher than the unpolluted lake.

Step-by-step explanation:

The table with the data is:

Sample 1 Sample 2

0.580    0.382

0.711      0.276

0.571     0.570

0.666    0.366

0.598

The mean and standard deviation for sample 1 are:

M=\dfrac{1}{5}\sum_{i=1}^{5}(0.58+0.711+0.571+0.666+0.598)\\\\\\ M=\dfrac{3.126}{5}=0.63

s=\sqrt{\dfrac{1}{(n-1)}\sum_{i=1}^{5}(x_i-M)^2}\\\\\\s=\sqrt{\dfrac{1}{4}\cdot [(0.58-(0.63))^2+...+(0.598-(0.63))^2]}\\\\\\            s=\sqrt{\dfrac{1}{4}\cdot [(0.002)+(0.007)+(0.003)+(0.002)+(0.001)]}\\\\\\            s=\sqrt{\dfrac{0.015}{4}}=\sqrt{0.0037}\\\\\\s=0.061

The mean and standard deviation for sample 2 are:

M=\dfrac{1}{4}\sum_{i=1}^{4}(0.382+0.276+0.57+0.366)\\\\\\ M=\dfrac{1.594}{4}=0.4

s=\sqrt{\dfrac{1}{(n-1)}\sum_{i=1}^{4}(x_i-M)^2}\\\\\\s=\sqrt{\dfrac{1}{3}\cdot [(0.382-(0.4))^2+(0.276-(0.4))^2+(0.57-(0.4))^2+(0.366-(0.4))^2]}\\\\\\            s=\sqrt{\dfrac{1}{3}\cdot [(0)+(0.015)+(0.029)+(0.001)]}\\\\\\            s=\sqrt{\dfrac{0.046}{3}}=\sqrt{0.015}\\\\\\s=0.123

<u>Confidence interval</u>

We have to calculate a 95% confidence interval for the difference between means.

The sample 1, of size n1=5 has a mean of 0.63 and a standard deviation of 0.061.

The sample 2, of size n2=4 has a mean of 0.4 and a standard deviation of 0.123.

The difference between sample means is Md=0.23.

M_d=M_1-M_2=0.63-0.4=0.23

The estimated standard error of the difference between means is computed using the formula:

s_{M_d}=\sqrt{\dfrac{\sigma_1^2}{n_1}+\dfrac{\sigma_2^2}{n_2}}=\sqrt{\dfrac{0.061^2}{5}+\dfrac{0.123^2}{4}}\\\\\\s_{M_d}=\sqrt{0.001+0.004}=\sqrt{0.005}=0.07

The critical t-value for a 95% confidence interval is t=2.365.

The margin of error (MOE) can be calculated as:

MOE=t\cdot s_{M_d}=2.365 \cdot 0.07=0.159

Then, the lower and upper bounds of the confidence interval are:

LL=M_d-t \cdot s_{M_d} = 0.23-0.159=0.071\\\\UL=M_d+t \cdot s_{M_d} = 0.23+0.159=0.389

The 95% confidence interval for the difference between means is (0.071, 0.389).

<u>Hypothesis test</u>

This is a hypothesis test for the difference between populations means.

The claim is that the fish in this particular polluted lake have signficantly elevated mercury levels.

Then, the null and alternative hypothesis are:

H_0: \mu_1-\mu_2=0\\\\H_a:\mu_1-\mu_2> 0

The significance level is 0.05.

The sample 1, of size n1=5 has a mean of 0.63 and a standard deviation of 0.061.

The sample 2, of size n2=4 has a mean of 0.4 and a standard deviation of 0.123.

The difference between sample means is Md=0.23.

M_d=M_1-M_2=0.63-0.4=0.23

The estimated standard error of the difference between means is computed using the formula:

s_{M_d}=\sqrt{\dfrac{\sigma_1^2}{n_1}+\dfrac{\sigma_2^2}{n_2}}=\sqrt{\dfrac{0.061^2}{5}+\dfrac{0.123^2}{4}}\\\\\\s_{M_d}=\sqrt{0.001+0.004}=\sqrt{0.005}=0.07

Then, we can calculate the t-statistic as:

t=\dfrac{M_d-(\mu_1-\mu_2)}{s_{M_d}}=\dfrac{0.23-0}{0.07}=\dfrac{0.23}{0.07}=3.42

The degrees of freedom for this test are:

df=n_1+n_2-1=5+4-2=7

This test is a right-tailed test, with 7 degrees of freedom and t=3.42, so the P-value for this test is calculated as (using a t-table):

\text{P-value}=P(t>3.42)=0.006

As the P-value (0.006) is smaller than the significance level (0.05), the effect is significant.

The null hypothesis is rejected.

There is enough evidence to support the claim that the fish in this particular polluted lake have signficantly elevated mercury levels.

<u> </u>

c. They agree. Both conclude that the levels of mercury are significnatly higher compared to a unpolluted lake.

In the case of the confidence interval, we reach this conclusion because the lower bound is greater than 0. This indicates that, with more than 95% confidence, we can tell that the difference in mercury levels is positive.

In the case of the hypothesis test, we conclude that because the P-value indicates there is a little chance we get that samples if there is no significant difference between the mercury levels. This indicates that the values of mercury in the polluted lake are significantly higher than the unpolluted lake.

7 0
3 years ago
Other questions:
  • Simplify expression: <br><br> 3(4x-5) + 4(2x+6)
    5·2 answers
  • Indicate the method you would use to prove the two triangles congruent. If no method applies, enter “none”.
    7·1 answer
  • Laura &amp; Mary are doing their homework together.
    11·1 answer
  • Kevin gets and auto loan of $12,000 at 8% annual interest. The terms of his loan state that he has to pay 292.96 each month for
    9·1 answer
  • 2 thousands divided by what number is equal to 2 hundreds?
    11·1 answer
  • Which number from the set {0, 2, 3, 4} makes this inequality true? 6x − 10 &gt; 2x + 2
    15·2 answers
  • Nate solves the problem 3x5=15 by writing and solving 15 divide 5=3. explain why nates method works
    9·1 answer
  • Please help me ASAP!!!!!
    6·2 answers
  • Mr. Robinson has raised $900 for his St. Baldricks campaign to fund childhood cancer research. This is 60% of his fundraising go
    10·2 answers
  • Which expression is half as large as the expression 345+23?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!