1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolbaska11 [484]
3 years ago
10

Three decimals between 8.6 and 9.2?

Mathematics
2 answers:
charle [14.2K]3 years ago
6 0

Answer:

8.7, 8.9, 9.0

Step-by-step explanation:

nydimaria [60]3 years ago
4 0

Answer:

8.7, 8.9, & 9.1

Step-by-step explanation:

The decimal places go up by tens like all other numbers. Therefore, 8.7, 8.9, and 9.1 are all in between 8.6 and 9.2

You might be interested in
Bassima evaluated the expression below. 2 (12 minus 14) squared minus (negative 5) + 12 = 2 (negative 2) squared minus (negative
S_A_V [24]

Answer:

the answer is that Bassima evaluated -(-5) as 5.

Step-by-step explanation:

Hope it helps :)

Also srry for late response

5 0
3 years ago
Read 2 more answers
BRAINLIEST ASAP! PLEASE HELP ME :)
Margaret [11]

Answer:

\large \boxed{\text{3.0 mi/h}}

Step-by-step explanation:

            Let x = the current of the river

Then 21 + x  = the speed going downstream (with the current)

  a nd 21 - x  = the speed going upstream (against the current)

Distance = speed × time

           d = st

            t = d/s

Time going downstream = time going upstream

\begin{array}{rcll}\dfrac{2.4}{21+ x}& = & \dfrac{1.8}{21 - x} &\\\\2.4& = &(21 + x) \dfrac{1.8}{21 - x} &\text{Multiplied each side by (21 + x)}\\\\2.4(21 - x)& = & 1.8(21 + x) &\text{Multiplied each side by (21 - x)}\\50.4 - 2.4x&=& 37.8 + 1.8x&\text{Removed parentheses}\\50.4 & = & 37.8 + 4.2x & \text{Added 2.4x to each side}\\\end{array}\\

\begin{array}{rcll}12.6 & = & 4.2x & \text{Subtracted 37.8 from each side}\\x & = &\dfrac{12.6}{4.2}&\text{Divided each side by 4.2}\\\\ & = &\mathbf{3.0}& \text{Simplified}\\\\\end{array}\\\text{The current is $\large \boxed{\textbf{3.0 mi/h}}$}

Check:

\begin{array}{rcl}\dfrac{2.4}{21+ 3}& = & \dfrac{1.8}{21 - 3}\\\\\dfrac{2.4}{24}& = & \dfrac{1.8}{18}\\\\0.10 & = & 0.10\\\end{array}

OK

4 0
3 years ago
Which graph represent the solution set of this inequality
VashaNatasha [74]
Hi!

First, let me explain that open circles mean that the answer starts after or before that number. So if the answer is q < 4, the answer would be C, and not B. 

If the answer was q ≤ 4, the answer would be B, and not C. 

I hope that makes sense. Now let's solve the inequality.

Remember that whatever we do to the inequality, we have to do it to both sides. 

We need to isolate q on one side.
11q + 5 ≤ 49
Start by subtracting 5 from both sides.
11q + 5 - 5 ≤ 49 - 5
11q ≤ 44
Divide by 11 on both sides.
11q/11 ≤ 44/11
q ≤ 4

The answer is B.

Hope this helps! :)
3 0
3 years ago
What times what equals 68 ?
Anna71 [15]
34 x 2 = 68
17 x 4 = 68
3 0
4 years ago
Help with num 1 please.​
KengaRu [80]

Answer:

(i)  \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)  \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)  \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Exponential Differentiation

Logarithmic Differentiation

Step-by-step explanation:

(i)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = (3x^2 - x)ln(2x + 1)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (3x^2 - x)'ln(2x + 1) + (3x^2 - x)[ln(2x + 1)]'
  2. Basic Power Rule/Logarithmic Differentiation [Chain Rule]:                       \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{1}{2x + 1}(2x + 1)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{2}{2x + 1}
  4. Simplify [Factor]:                                                                                           \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \frac{x^2 + 2}{lnx}

<u>Step 2: Differentiate</u>

  1. Quotient Rule:                                                                                               \displaystyle y' = \frac{(x^2 + 2)'lnx - (x^2 + 2)(lnx)'}{(lnx)^2}
  2. Basic Power Rule/Logarithmic Differentiation:                                           \displaystyle y' = \frac{2xlnx - (x^2 + 2)\frac{1}{x}}{(lnx)^2}
  3. Rewrite:                                                                                                         \displaystyle y' = \frac{2xlnx}{(lnx)^2} - \frac{(x^2 + 2)\frac{1}{x}}{(lnx)^2}
  4. Simplify:                                                                                                         \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = e^xln(2x)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (e^x)'ln(2x) + e^x[ln(2x)]'
  2. Exponential Differentiation/Logarithmic Differentiation [Chain Rule]:       \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})(2x)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})2
  4. Simplify:                                                                                                         \displaystyle y' = e^xln(2x) + \frac{e^x}{x}
  5. Rewrite:                                                                                                         \displaystyle y' = \frac{xe^xln(2x) + e^x}{x}
  6. Factor:                                                                                                           \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • What is 143/13 as a mixed numeral?
    7·1 answer
  • C times 9 for c equals 13
    11·2 answers
  • Solve using the order of operations: 56 ÷ (4 + 3) - (1 + 5)?
    6·2 answers
  • Determine the quadrant for an angle with the following characteristics: cotθ&gt;0 and cscθ&gt;0.
    10·1 answer
  • I WILL GIVE BRAINLIEST ANSWER!
    5·2 answers
  • Answer this question
    10·1 answer
  • Which equation is the equation of a line that is perpendicular to x + 2y = 16?
    9·1 answer
  • The triangles shown below must be congruent<br> A. True<br> B. False
    10·2 answers
  • PLEASE HELP ME
    15·2 answers
  • What is the difference between the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!