0 × <span>0 = 0
0 </span>× <span>1 = 0
1 </span>× <span>1 = 1
Which means multiplication is closed under {0, 1}
</span><span>1 </span>÷ <span>1 = 1
0 </span>÷ <span>1 = 0
</span>
Division is not closed under {0, 1}
1 + 1 = 2
Addition is not closed under {0, 1}
0 - 1 = -1
Subtraction is not closed under {0, 1} either
So it's only A. Multiplication which is closed under {0, 1}
Answer:
Step-by-step explanation:
Since the length of time taken on the SAT for a group of students is normally distributed, we would apply the formula for normal distribution which is expressed as
z = (x - u)/s
Where
x = length of time
u = mean time
s = standard deviation
From the information given,
u = 2.5 hours
s = 0.25 hours
We want to find the probability that the sample mean is between two hours and three hours.. It is expressed as
P(2 lesser than or equal to x lesser than or equal to 3)
For x = 2,
z = (2 - 2.5)/0.25 = - 2
Looking at the normal distribution table, the probability corresponding to the z score is 0.02275
For x = 3,
z = (3 - 2.5)/0.25 = 2
Looking at the normal distribution table, the probability corresponding to the z score is 0.97725
P(2 lesser than or equal to x lesser than or equal to 3)
= 0.97725 - 0.02275 = 0.9545
Answer:
it is 900
Step-by-step explanation:
You could not do that then you would gey 110.25 which is what is not the question