Answer:
the x terms
Step-by-step explanation:
there is a +x and a -x.
x-x=0,
x will cancel out
Answer:
0.362
Step-by-step explanation:
When drawing randomly from the 1st and 2nd urn, 4 case scenarios may happen:
- Red ball is drawn from the 1st urn with a probability of 9/10, red ball is drawn from the 2st urn with a probability of 1/6. The probability of this case to happen is (9/10)*(1/6) = 9/60 = 3/20 or 0.15. The probability that a ball drawn randomly from the third urn is blue given this scenario is (1 blue + 5 blue)/(8 red + 1 blue + 5 blue) = 6/14 = 3/7.
- Red ball is drawn from the 1st urn with a probability of 9/10, blue ball is drawn from the 2nd urn with a probability of 5/6. The probability of this event to happen is (9/10)*(5/6) = 45/60 = 3/4 or 0.75. The probability that a ball drawn randomly from the third urn is blue given this scenario is (1 blue + 4 blue)/(8 red + 1 blue + 1 red + 4 blue) = 5/14
- Blue ball is drawn from the 1st urn with a probability of 1/10, blue ball is drawn from the 2nd urn with a probability of 5/6. The probability of this event to happen is (1/10)*(5/6) = 5/60 = 1/12. The probability that a ball drawn randomly from the third urn is blue given this scenario is (4 blue)/(9 red + 1 red + 4 blue) = 4/14 = 2/7
- Blue ball is drawn from the 1st urn with a probability of 1/10, red ball is drawn from the 2st urn with a probability of 1/6. The probability of this event to happen is (1/10)*(1/6) = 1/60. The probability that a ball drawn randomly from the third urn is blue given this scenario is (5 blue)/(9 red + 5 blue) = 5/14.
Overall, the total probability that a ball drawn randomly from the third urn is blue is the sum of product of each scenario to happen with their respective given probability
P = 0.15(3/7) + 0.75(5/14) + (1/12)*(2/7) + (1/60)*(5/14) = 0.362
You need to find the x-coordinate (h) of the vertex of the parabola.

After 22 seconds.
Each pack would cost $4.99
The average rate of change over some interval [a, b] is equal to the slope of the secant line from (a, h(a)) to (b, h(b)).
h(t) is a quadratic function, so its graph is a parabola, and in particular it's one that has a minimum of -4 when t = 2.
The secant line over an interval [a, b] will have a negative slope if the distance from a to 2 is larger than the distance from b to 2.
(A) If a = 4 and b = 5, then |a - 2| = 2 and |b - 2| = 3, so the slope and hence average rate of change is positive.
(B) If a = -1 and b = 5, then |a - 2| = 3 and |b - 2| = 3, so this ARoC is zero.
(C) If a = 0 and b = 4, then |a - 2| = 2 and |b - 2| = 2, so this ARoC is also zero.
(D) If a = -1 and b = 4, then |a - 2| = 3 and |b - 2| = 2, so this ARoC is negative.