Answer:
Abstract
Respiratory homeostasis is concerned with the regulation of a blood gas composition that is compatible with maintaining cellular homeostasis. Provided that the lung-capillary exchange barrier does not prevent the exchange of gases, then blood leaving the lung will have oxygen and carbon dioxide partial pressures that are similar to the average values found in the alveoli. Alveolar ventilation establishes these values. If blood gas composition, especially of carbon dioxide, moves outside the homeostatic range, the change is detected by chemoreceptors and respiratory responses are promoted which change alveolar ventilation, alter alveolar gas composition and so reverse the change. Ventilation therapies provide the means of artificially restoring alveolar gas composition. In general terms, they do this by raising the partial pressure of oxygen within the alveoli either by using oxygen-enriched gas mixtures, or by improving the ventilation of alveoli using positive pressure.
Explanation:
Answer:
You just answered yourself buddy
Explanation:
Answer:

Explanation:
It is given that
B is the dominant allele which represents the black color
and b is the recessive allele which represents the white fur.
B being dominant will result into black color fur for genotype "Bb"
Given -
Frequency of black fur allele (p) is 
As per Hardy Weinberg's first law of equilibrium

Substituting the value of p in above equation, we get -

q represents the frequency for white fur allele
Frequency of white fur phenotype is

Frequency of homozygous black fur phenotype (BB) is

As per Hardy Weinberg's second law of equilibrium -

Combined frequency of homozygous and heterozygous black fur phenotype is

Answer:
toooo blurryyyy post another pic but clear
Explanation: