Your answer will be 2.181818
Answer:
the probability that a truck drives less than 159 miles in a day = 0.9374
Step-by-step explanation:
Given;
mean of the truck's speed, (m) = 120 miles per day
standard deviation, d = 23 miles per day
If the mileage per day is normally distributed, we use the following conceptual method to determine the probability of less than 159 miles per day;
1 standard deviation above the mean = m + d, = 120 + 23 = 143
2 standard deviation above the mean = m + 2d, = 120 + 46 = 166
159 is below 2 standard deviation above the mean but greater than 1 standard deviation above the mean.
For normal districution, 1 standard deviation above the mean = 84 percentile
Also, 2 standard deviation above the mean = 98 percentile
143 --------> 84%
159 ---------> x
166 --------- 98%

Therefore, the probability that a truck drives less than 159 miles in a day = 0.9374
Unit Rate is the correct answer, I know because it is the correct answer
Answer: 24 units.
Step-by-step explanation: Count out how many units long AB is. AB goes from -3 to 3, for a length of 6 units.
Count out how long AC is. AC goes from 4 to -4, for a length of 8 units.
To find BC, use the Pythgorean theorem (a^2+b^2=c^2). 8^2 is 64, and 6^2 is 36. Add 64 and 36 to get 100. Then find the square root of 100, which is 10.
Add all the lengths. 6+8+10=24.
Answer:
the expression is
y=8x
Step-by-step explanation:
y varies directly as x is written as

introducing constant
y=kx
from the question, when y=48, x=6
substitute it in the formula
48=6k
<em>maki</em><em>ng</em><em> </em><em>k</em><em> </em><em>the</em><em> subject</em><em> </em><em>by</em><em> </em><em>divi</em><em>ding</em><em> </em><em>throu</em><em>gh</em><em> </em><em>by</em><em> </em><em>6</em>
<em>
</em>
<em>k</em><em>=</em><em>8</em>
<em>put</em><em>ting</em><em> </em><em>the </em><em>va</em><em>lue</em><em> </em><em>of</em><em> </em><em>k</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>exp</em><em>ression</em><em>,</em>
<em>y</em><em>=</em><em>8</em><em>x</em>
<em>the</em><em> </em><em>valu</em><em>e</em><em> </em><em>of</em><em> </em><em>y</em><em> </em><em>whe</em><em>n</em><em> </em><em>x</em><em>=</em><em>2</em>
<em>y</em><em>=</em><em>8</em><em>×</em><em>2</em>
<em>y</em><em>=</em><em>1</em><em>6</em>
<em>thu</em><em>s</em><em> </em><em>the </em><em>valu</em><em>e</em><em> </em><em>of</em><em> </em><em>y</em><em> </em><em>whe</em><em>n</em><em> </em><em>x</em><em>=</em><em>2</em><em> </em><em>is</em><em> </em><em>1</em><em>6</em><em>.</em>