Answer:
6.33... and 0.333...
Step-by-step explanation:
The quadratic formula is
.
It is important because while some quadratics are factorable and can be solved not all are. The formula will solve all quadratic equations and can also give both real and imaginary solutions. Using the formula will require less work than finding the factors if factorable. We will substitute a=9, b=-54 and c=-19.

We will now solve for the plus and the minus.
The plus,,,
and the minus...

Answer:
D = L/k
Step-by-step explanation:
Since A represents the amount of litter present in grams per square meter as a function of time in years, the net rate of litter present is
dA/dt = in flow - out flow
Since litter falls at a constant rate of L grams per square meter per year, in flow = L
Since litter decays at a constant proportional rate of k per year, the total amount of litter decay per square meter per year is A × k = Ak = out flow
So,
dA/dt = in flow - out flow
dA/dt = L - Ak
Separating the variables, we have
dA/(L - Ak) = dt
Integrating, we have
∫-kdA/-k(L - Ak) = ∫dt
1/k∫-kdA/(L - Ak) = ∫dt
1/k㏑(L - Ak) = t + C
㏑(L - Ak) = kt + kC
㏑(L - Ak) = kt + C' (C' = kC)
taking exponents of both sides, we have

When t = 0, A(0) = 0 (since the forest floor is initially clear)


So, D = R - A =

when t = 0(at initial time), the initial value of D =

Answer:
3 : 1
Step-by-step explanation:
120-90=30
90 mangoes
30 apples
90 : 30 divide both by 10
9 : 3 divide both by 3
3 : 1
<span>p=210e^(0.0069*20)
'e' is a mathematical constant equal to 2.718281828459
</span>
<span>0.0069*20 = .138
e^.138 =
</span>
<span>2.718281828459^.138 =
</span>
<span>
<span>
<span>
1.1479755503
</span>
</span>
</span>
210 * <span>1.1479755503 =
</span>
<span>
<span>
<span>
241.074865563
</span>
</span>
</span>
Hmm if I'm not mistaken, is just an "ordinary" annuity, thus
![\bf \qquad \qquad \textit{Future Value of an ordinary annuity} \\\\ A=pymnt\left[ \cfrac{\left( 1+\frac{r}{n} \right)^{nt}-1}{\frac{r}{n}} \right] \\\\\\](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7BFuture%20Value%20of%20an%20ordinary%20annuity%7D%0A%5C%5C%5C%5C%0AA%3Dpymnt%5Cleft%5B%20%5Ccfrac%7B%5Cleft%28%201%2B%5Cfrac%7Br%7D%7Bn%7D%20%5Cright%29%5E%7Bnt%7D-1%7D%7B%5Cfrac%7Br%7D%7Bn%7D%7D%20%5Cright%5D%0A%5C%5C%5C%5C%5C%5C)