1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SIZIF [17.4K]
3 years ago
11

Given: Sine (A) = four-fifths, StartFraction pi Over 2 EndFraction < A < Pi and Sine (B) = StartFraction negative 2 StartR

oot 5 EndRoot Over 5 EndFraction, pi, Pi < B < StartFraction 3 pi Over 2 EndFraction
What is the value of cos(A – B)?

Negative StartFraction 2 StartRoot 5 EndRoot Over 25 EndFraction
Negative StartFraction StartRoot 5 EndRoot Over 5 EndFraction
StartFraction 2 StartRoot 5 EndRoot Over 5 EndFraction
StartFraction 11 StartRoot 5 EndRoot Over 25 EndFraction

Mathematics
2 answers:
ELEN [110]3 years ago
8 0

Answer:

D

Step-by-step explanation:

Did test(edge 2020)

Marianna [84]3 years ago
4 0

Answer:

d

Step-by-step explanation:

edge 2020

You might be interested in
Solve for t: 2(3t) = 54 3 7 9 10 4/5
zalisa [80]
2(3t)=54
Divide both sides by 2
3t=27
Divide both by 3
t=9
You can plug it in 2(3*9) = 2(27) = 54
8 0
4 years ago
15.30 find the inverse laplace transform of: 1. (a) f1(s) = 6s 2 8s 3 s(s 2 2s 5) 2. (b) f2(s) = s 2 5s 6 (s 1) 2 (s 4) 3. (c) f
EleoNora [17]

The solution of the inverse Laplace transforms is mathematically given as

  • f_{1}(t)=e^{-t}\sin (2 t)
  • f_{2}(t)=\frac{7}{9} e^{-t}+\frac{2}{3} e^{-t}+\frac{2}{9} e^{-4 t}
  • f_{3}(t)=2 e^{-t}-2 e^{-2 t} \cos (2 t)-e^{-2 t} \sin (2 t)

<h3>What is  the inverse Laplace transform?</h3>

1)

Generally, the equation for the function is  mathematically given as

$F_{1}(s)=\frac{6 s^{2}+8 s+3}{s\left(s^{2}+2 s+5\right)}$

By Applying the Partial fractions method

\frac{6 s^{2}+8 s+3}{s\left(s^{2}+2 s+5\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+2 s+5}

$6 s^{2}+8 s+3=A\left(s^{2}+2 s+5\right)+(B s+C) s$

\begin{aligned}&3=5 A \\&A=\frac{3}{5}\end{aligned}

Considers s^2 coefficient

\begin{aligned}&6=A+B \\&B=6 \cdot A \\&B=\frac{27}{5}\end{aligned}

Consider s coeffici ent

\begin{aligned}&8=2 A+C \\&C=8-2 A \\&C=\frac{34}{5}\end{aligned}

Putting these values into the previous equation

&F_{1}(s)=\frac{3}{5 s}+\frac{27 s+34}{5\left(s^{2}+2 s+5\right)} \\\\&F_{1}(s)=\frac{3}{5 s}+\frac{27(s+1)}{5\left((s+1)^{2}+4\right)}+\frac{7 \times 2}{10\left((s+1)^{2}+4\right)}

By taking Inverse Laplace Transforms

f_{1}(t)=\frac{3}{5}+\frac{27}{5} e^{-t} \cos (2t) + \frac{7}{10}\\\\

f_{1}(t)=e^{-t}\sin (2 t)

For B

$F_{2}(s)=\frac{s^{2}+5 s+6}{(s+4)(s+1)^{2}}$

By Applying Partial fractions method

\begin{aligned}&\frac{s^{2}+5 s+6}{(s+4)(s+1)^{2}}=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}+\frac{C}{s+4} \\\\&s^{2}+5 s+6=A(s+1)(s+4)+B(s+4)+C(s+1)^{2}\end{aligned}

at s=-1

1-5+6=3 B \\\\B=\frac{2}{3}

at s=-4

&16-20+6=9 C \\\\&9 C=2 \\\\&C=\frac{2}{9}

at s^2 coefficient

1=A+C

A=1-C

A=7/9

inputting Variables into the Previous Equation

\begin{aligned}&F_{2}(s)=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}+\frac{C}{s+4} \\&F_{2}(s)=\frac{7}{9(s+1)}+\frac{2}{3(s+1)^{2}}+\frac{2}{9(s+4)}\end{aligned}

By taking Inverse Laplace Transforms

f_{2}(t)=\frac{7}{9} e^{-t}+\frac{2}{3} e^{-t}+\frac{2}{9} e^{-4 t}

For C

$F_{3}(s)=\frac{10}{(s+1)\left(s^{2}+4 s+8\right)}$

Using the strategy of Partial Fractions

\frac{10}{(s+1)\left(s^{2}+4 s+8\right)}=\frac{A}{s+1}+\frac{B s+C}{s^{2}+4 s+8}

10=A\left(s^{2}+4 s+8\right)+(B s+C)(s+1)

S=-1

10=(1-4+8) A

A=10/5

A=2

Consider constants

10=8 A+C

C=10-8 A

C=10-16

C=-6

Considers s^2 coefficient

0=A+B

B=-A

B=-2

inputting Variables into the Previous Equation

&F_{3}(s)=\frac{2}{s+1}+\frac{-2 s-6}{\left((s+2)^{2}+4\right)} \\\\&F_{3}(s)=\frac{2}{s+1}-\frac{2(s+2)}{\left((s+2)^{2}+4\right)}-\frac{2}{\left((s+2)^{2}+4\right)}

Inverse Laplace Transforms

f_{3}(t)=2 e^{-t}-2 e^{-2 t} \cos (2 t)-e^{-2 t} \sin (2 t)

Read more about Laplace Transforms

brainly.com/question/14487937

#SPJ4

3 0
2 years ago
Please help i really need it
dezoksy [38]
Answer: Perpendicular Bisector
3 0
3 years ago
Read 2 more answers
Determine whether the graphs of y =-9x+12 and y=1/3x-12 are parallel, perpendicular, coincident
notka56 [123]

1) graphs y = -9x + 12 and y = 1/3x - 12 are not coincident.

2) The graphs are not parallel, because the angular coefficients are not equal

3) The condition of perpendicularity:

k_1\cdot k_2=-1, where k_1=-9;~~~ k_2=\frac{1}{3}


(-9)\cdot\frac{1}{3}=-3\ne -1 - not perpendicular

8 0
3 years ago
Antonio works at a grocery store. He puts 23 pounds of flour into 5 sacks. He put the same weight of flour into each sack. How m
Igoryamba
Antonio put 4.6 pounds of flower into each stack since 23 pounds divided by 5 stacks is 4.6
8 0
3 years ago
Other questions:
  • Fifteen more than half a number is 9
    15·2 answers
  • Mary took out a loan to buy a $30,000 boat but had $2,000 cash to put down.Which of the following is true? a. Mary decreased bot
    9·2 answers
  • What is the domain of the relation? A. {–2, 2, 3} B. {–4, 2, 3} C. {–4, –2, 3} D. {–4, –2, 2}
    12·1 answer
  • A bakery baked 16 cakes using 40 pounds of sugar. For each cake,... pounds of sugar was used
    10·2 answers
  • Rewrite each of the following durations using eighth notes. Write in words and as a fraction: 1 quarter note 1 half note 1 full
    13·1 answer
  • What is the value of the number? -(-6)?
    12·2 answers
  • Marie invested $10,000 in a savings account that pays 2% interest quarterly ( 4 times a year). How much
    11·1 answer
  • Part 2: Use congruency theorems to prove congruency. The congruency of △MNO and △XYZ can be proven using a reflection across the
    5·1 answer
  • Find the equivalent expression of 1/3
    9·1 answer
  • PLEASE I NEED HELP!!!!!! I"LL GIVE BRAINIEST!!!
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!