When solving an equation with an absolute value term, you make two separate equations ans solve for x:
Equation 1: |4x-3|-5 = 4
1st add 5 to both sides:
|4x-3| = 9
Remove the absolute value term and make two equations:
4x-3 = 9 and 4x - 3 = -9
Solving for x you get X = 3 and x = -1.5
When you replace x with those values in the original equation the statement is true so those are two solutions.
Do the same thing for equation 2:
|2x+3| +8 = 3
Subtract 8 from both sides:
|2x+3| = -5
Remove the absolute value term and make two equations:
2x +3 = -5
2x+3 = 5
Solving for x you get -1 and 4, but when you replace x in the original equation with those values, the statement is false, so there are no solutions.
The answer is:
C. The solutions to equation 1 are x = 3, −1.5, and equation 2 has no solution.
Answer: X = 1/4 or X = -1
Step-by-step explanation:
4x2+3x−1=0
(4x−1)(x+1)=0
4x−1=0 or x+1=0
4x=1 or x=-1
Now divide 4 from both sides
like this 4x/4=1/4
now cancel out two 4's so the answer will be x=1/4
Answer:
the answerto this is 18.02.
First, you have to get the equation to the normal form of a line. To do this, you divide both sides by -6 to get

. The y-intercept is at -4 and your slope is 2/3. Use this to graph the equation.