1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
JulijaS [17]
3 years ago
14

Simplify 3/4(1/2x-12)+4/5

Mathematics
1 answer:
Nitella [24]3 years ago
8 0

Answer:

3x/8 - 41/5

Step-by-step explanation:

Simplify each term.

3x/8 − 9+4/5

To write −9 as a fraction with a common denominator, multiply by 5/5

3x/8−9 x 5/5 + 4/5

Combine −9 and 5/5

Combine the numerators over the common denominator.

3x/8 + −41/5

Move the negative in front of the fraction

3x/8 - 41/5

Hope this helps you

You might be interested in
If 3/5 of the girls in class have long brown hair and 1/3 of them have green eyes how many girls in class have long brown hair a
goblinko [34]
I'm guessing 1/3 of 3/5 is what you mean

1/3 of 3/5=1/3 times 3/5=3/15=1/5

1/5 of class has long brown hair and green eyes
3 0
3 years ago
Read 2 more answers
Write an equation in slope-intercept form of the line with the given characteristics:
kobusy [5.1K]

Answer:

1. y = -3x + 5

2. y = 1/4x - 2

Step-by-step explanation:

y=mx+b

1. 5 = -3(0) + b, so b = 5

y = -3x + 5

2. (-2-(-1))/(0-4) = -1/-4 = 1/4

-2 = 1/4(0) + b, so b = -2

y = 1/4x - 2

5 0
3 years ago
Read 2 more answers
Find the equation of the quadratic function f whose graph is shown below.
Marianna [84]

Step-by-step explanation:

A quadratic function is a second-degree polynomial function with the general form

                                          f(x) \ = \ ax^{2} \ + \ bx \ + \ c,

where a, b, and c are real numbers, and a \ \neq \ 0.

The standard form or the vertex form of a quadratic function is, however, a little different from the general form. To get the standard form from the general form, we need to use the "complete the square" method.

                          f(x) \ = \ ax^{2} \ + \ bx \ + \ c \\ \\ \\ f(x) \ = \ a\left(x^{2} \ + \ \displaystyle\frac{b}{a}x \right) \ + \ c \\ \\ \\ f(x) \ = \ a\left[x^{2} \ + \ \displaystyle\frac{b}{a}x \ + \ \left(\displaystyle\frac{b}{2a}\right)^{2} \ - \ \left(\displaystyle\frac{b}{2a}\right)^{2} \right] \ + \ c \\ \\ \\ f(x) \ = \ a\left[x^{2} \ + \ \displaystyle\frac{b}{a}x \ + \ \left(\displaystyle\frac{b}{2a}\right)^{2}\right] \ - \ a\left(\displaystyle\frac{b}{2a}\right)^{2} \ + \ c

                          f(x) \ = \ a\left(x \ + \ \displaystyle\frac{b}{2a}\right)^{2} \ + \ c \ - \ a\left(\displaystyle\frac{b^{2}}{4a^{2}}\right) \\ \\ \\ f(x) \ = \ a\left(x \ + \ \displaystyle\frac{b}{2a}\right)^{2} \ + \ c \ - \ \displaystyle\frac{b^{2}}{4a}

Let

                                         h \ = \ -\displaystyle\frac{b}{2a}     and     k \ = \ c \ - \ \displaystyle\frac{b^{2}}{4a},

then the expression reduces into

                                              f(x) \ = \ a \left(x \ - \ h\right)^{2} \ + \ k,

where the point (<em>h</em>, <em>k</em>) are the coordinates for the vertex of the quadratic function.

There are two different methods to approach this question. First, we consider the general form of the quadratic function, it is observed that has a y-intercept at the point \left(0, \ 2\right), so

                                            f(0) \ = \ -2 \\ \\ \\ f(0) \ = \ a(0)^{2} \ + \ b(0) + c \\ \\ \\ c = \ -2.

Additionally, it is pointed that two distinct points (-1, \ -3) and (-4, \ 6) lies on the quadratic graph, hence

                                       f(-1) \ = \ -3 \\ \\ \\ f(-1) \ = \ a(-1)^{2} \ + \ b(-1) \ -2 \\ \\ \\ \-\hspace{0.36cm} -3 \ = \ a \ - \ b \ -2 \\ \\ \\ \-\hspace{0.3} a \ - \ b \ = \ -1 \ \ \ \ \ \ $-----$ \ (1)

and

                                     \-\hspace{0.18cm}f(-4) \ = \ 6 \\ \\ \\ \-\hspace{0.18cm} f(-4) \ = \ a(-4)^{2} \ + \ b(-4) \ -2 \\ \\ \\ \-\hspace{0.97cm} 6 \ = \ 16a \ - \ 4b \ -2 \\ \\ \\ \-\hspace{0.98cm} 8 \ = \ 16a \ - \ 4b \\ \\ \\ 4a \ - \ b \ = \ 2 \ \ \ \ \ \ $-----$ \ (2).

Subtract equation (1) from equation (2) term-by-term,

                          \-\hspace{0.72cm} (4a \ - \ b) \ - \ (a \ - \ b) \ = \ 2 \ - \ (-1) \\ \\ \\ (4a \ - \ a) \ + \ \left[-b \ - \ (-b)\right] \ = \ 2 \ + \ 1 \\ \\ \\ \-\hspace{3.8cm} 3a \ = \ 3 \\ \\ \\ \-\hspace{4cm} a \ = \ 1

Substitute a \ = \ 1 into equation (1),

                                                 1 \ - \ b \ = \ -1 \\ \\ \\ \-\hspace{0.86cm} b \ = \ 2.

Therefore, the equation of the quadratic function is

                                               f(x) \ = \ x^2 \ + \ 2x \ -2.

\rule{12.5cm}{0.02cm}

Alternatively, the vertex of the quadratic function is given as the point (-1, \ -3), substitute these coordinates into the vertex form of a quadratic function.

                                            f(x) = a\left(x \ + \ 1\right)^{2} \ - \ 3.

Substitute the point (-4, \ 6) into the function above,

                                     f(-4) \ = \ 6 \\ \\ \\ f(-4) \ = \ a\left[(-4) \ + \ 1\right]^{2} \ - \ 3 \\ \\ \\ \-\hspace{0.75cm} 6 \ = \ a(-3)^{2} \ - \ 3 \\ \\ \\ \-\hspace{0.55cm} 9a \ = \ 9 \\ \\ \\ \-\hspace{0.75cm} a \ = \ 1.

Therefore, the general form of the quadratic function is

                                       f(x) \ = \ (x \ + \ 1)^{2} \ - \ 3 \\ \\ \\ f(x) \ = \ (x^2 \ + \ 2x \ + \ 1) \ - \ 3 \\ \\ \\ f(x) \ = \ x^2 \ + \ 2x \ - \ 2.

6 0
2 years ago
Combine like terms. (4x^2-5x+6)+(9x^2-2x)-(11x-3)
antiseptic1488 [7]

Answer:

13x^2 - 18x + 9

Step-by-step explanation:

<u>Step 1:  Distribute the plus and minus signs</u>

(4x^2 - 5x + 6) + (9x^2 - 2x) - (11x - 3)

4x^2 - 5x + 6 + 9x^2 - 2x - 11x + 3

<u>Step 2:  Combine like terms</u>

4x^2 <u>- 5x</u> <em>+ 6</em> + 9x^2 <u>- 2x</u> <u>- 11x</u> <em>+ 3</em>

13x^2 - 18x + 9

Answer:  13x^2 - 18x + 9

3 0
3 years ago
Solve each equation by graphing. Round to the nearest tenth.<br> -2x^2+2=-3x
AlekseyPX

Answer:

  x = -0.5 or x = 2

Step-by-step explanation:

Finding solutions graphically is often easier if the equation can be put in the form f(x) = 0. Here, we can do that by subtracting the right-side expression to give ...

  (-2x^2 +2) -(-3x) = 0

This could be put in standard form, but there is no need. A graphing calculator can deal with this directly.

The solutions are x = -0.5 and x = 2.

5 0
3 years ago
Other questions:
  • All of the members of our spray-painting team paint at the same speed. If 20 team members can paint a 4800 square foot wall in 3
    11·1 answer
  • Jennifer is playing with a die that has six faces. what is the likelihood that she will roll a four?
    8·2 answers
  • The area of Hawaii is 40.47x100 square kilometers. What is Hawaii's area?
    7·1 answer
  • dave and his sister picked out two pumpkin at the pumpkin patch. the pumpkins cost $0.47 per pound. david's pumpkin weighed 13.2
    13·2 answers
  • Anyone know this that can help?
    15·1 answer
  • PLLSSSSSSS ASAP ANSWER BRAINLIEST
    7·1 answer
  • Simplify: (−5x + 7) − (x2 − 3x + 2). Write your answer in standard form.
    11·1 answer
  • Evaluet 2-(4-x) when x=-5​
    7·1 answer
  • Megan saved up her money and bought a model train. Each of the 8 cars on the train was the
    5·1 answer
  • What is the domain of f?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!