X=3
91 + x^2
91 + 3^2
91 + 9
91 + 9 = 100
The power symbols are missing.
I can infere that the product intended to simplify is (7^8) * (7^-4)., because that permits you to use the rule of the product of powers with the same base.
That rule is that the product of two powers with the same base is the base raised to the sum of the powers is:
(A^m) * (A^n) = A^ (m+n)
=>(7^8) * (7^-4) = 7^ [8 + (- 4) ] = 7^ [8 - 4] = 7^4, which is the option 3 if the powers are placed correctly.
We are given this

write it as the difference of cubes

use the formula for the difference of cubes

Now use the formula for the difference of squares as 

Answer:
m∠1=80°
m∠2=112°
m∠3=131°
m∠4=80°
m∠5=37°
Step-by-step explanation:
First you have to find m∠2
To do that find m∠6 (I created this angle shown in pic below)
Find m∠6 by using the sum of all ∠'s in a Δ theorem
m∠6=180°-(63°+49°)
m∠6=68°
Now you can find m∠2 with the supplementary ∠'s theorem
m∠2=180°-68°
m∠2=112°
Then you find m∠5 using the sum of all ∠'s in a Δ theorem
m∠5=180°-(112°+31°)
m∠5=37°
Now you can find m∠1
m∠1=180°-(63°+37°)
m∠1=180°-100°=80°
m∠4 can easily be found too now:
m∠4=180°-(63°+37°)
m∠4=80°
m∠3=180°-49°
m∠3=131°
Answer:
$y=(7/2)x+20$
Step-by-step explanation:
SInce the gradient of the first line is $-2/7$ then the gradien of the perpendicular line is $7/2$.
Therefore by the point slope formula the line that we are looking for is
$y-6=(7/2)(x+4)$
$y=(7/2)x + 20$