Hi!
If she worked 18 hours last week and 20 hours this week, then she worked 38 hours in total, because 18 + 20 = 38.
If she earns $6 per hour, and she worked for 38 hours, then she got 38 sets of 6, which you can find the answer to by multiplying 38 and 6.
This is essentially 6 + 6 + 6 +...
38 * 6 = $228
So she earned $228 these two weeks.
Hope this helped!
Answer:
In words the answer is between t=0 and t=2.
In interval notation the answer is (0,2)
In inequality notation the answer is 0<t<2
Big note: You should make sure the function I use what you meant.
Step-by-step explanation:
I hope the function is h(t)=-16t^2+32t because that is how I'm going to interpret it.
So if we can find when the ball is on the ground or has hit the ground (this is when h=0) then we can find when it is in the air which is between those 2 numbers.
0=-16t^2+32t
0=-16t(t-2)
So at t=0 and t=2
So the ball is in the air between t=0 and t=2
Interval notation (0,2)
Inequality notation 0<t<2
Before we begin, let's identify what kind of angles these are and are they related in any way?
These angles are both acute and they are both corresponding angles.
Corresponding angles are equal to each other, and we can use this fact to our advantage.
Since they are equal to each other, we can set the equations of 1 and 2 equal to each other. Like so,
1 = 2
83 - 2x = 92 - 3x
Now, we can solve for X by isolating it on one side.
83 - 2x = 92 - 3x
Add 3x to each side: (This basically moves the X on the right side to the left.)
83 - 2x + 3x = 92 - 3x + 3x
83 + x = 92
Subtract 83 on each side to isolate the X.
83 + x - 83 = 92 - 83
x = 92 - 83
x = 9
Therefore, X equals 9. To check our work, we can substitute X for 9.
83 - 2(9) = 92 - 3(9)
83 - 18 = 92 - 27
65 = 65 -
TRUE
So to conclude, Angle 1 is 65 degrees, Angle 2 is 65 degrees, and X equals 9.
Hope I could help you out!
If my answer is incorrect, or I provided an answer you were not looking for, please let me know. However, if my answer is explained well and correct, please consider marking my answer as Brainliest! :)
Have a good one.
God bless!
These problems really aren't hard just set them equal to each other and see if what they are saying is true. Are they equal? Do they both equal 0?