Answer:
The probability that Actuary Rahul examines fewer policies that Actuary Toby = 0.2857
Step-by-step explanation:
It is said that Actuary Rahul examines a low risk policy
Probability of a low risk policy having a claim = 10% = 0.1
Actuary Toby examines high risk policy
Probability of a high risk policy having a claim = 20% = 0.2
Let the number of policies examined by actuary Rahul before he finds a claim and stop be n
Probability that actuary Rahul examines exactly n policies = 
Probability that Toby examines more than n policies = 
Since the claim statuses of policies are mutually independent, the probability that both events happen simultaneously = 
probability that both events happen simultaneously = 
The probability that Actuary Rahul examines fewer policies that Actuary Toby =
= 
The probability that Actuary Rahul examines fewer policies that Actuary Toby = 0.2857
Answer:

Step-by-step explanation:
T is a linear transformation, hence it is homogeneous (T(cr)=cT(r) for all real c and r∈ℝ³) and additive (T(r+s)=T(r)+T(s), for all r,s∈ℝ³). Apply these properties with r=3u and s=2v to obtain:

We don't have an explicit definition of T, so it's more difficult to compute T(3u+2v) directly without using these properties.