Answer:
A
Step-by-step explanation:
-14>-8 because -14 is located to the left of -8 on the number line.
Answer:

Step-by-step explanation:
Given
Phone R-Us= $16.95 + $0.05 per SMS
Awesome Wireless = $22.95 + $0.02 per SMS
Required
Determine the number of SMS such that Awesome Wireless is greater or equal to Phone R-Us
Represent the SMS with S
For Phone R-Us, we have:

For Awesome Wireless, we have:

For Awesome Wireless is greater or equal to Phone R-Us, we have:

Collect Like Terms


Solve for S


<em>Hence: for Awesome Wireless to cost more or equal to Phone R-Us, the number of SMS must not exceed 200</em>
Answer:
To solve the first inequality, you need to subtract 6 from both sides of the inequality, to obtain 4n≤12. This can then be cancelled down to n≤3 by dividing both sides by 4. To solve the second inequality, we first need to eliminate the fraction by multiplying both sides of the inequality by the denominator, obtaining 5n>n^2+4. Since this inequality involves a quadratic expression, we need to convert it into the form of an^2+bn+c<0 before attempting to solve it. In this case, we subtract 5n from both sides of the inequality to obtain n^2-5n+4<0. The next step is to factorise this inequality. To factorise we must find two numbers that can be added to obtain -5 and that can be multiplied to obtain 4. Quick mental mathematics will tell you that these two numbers are -4 and -1 (for inequalities that are more difficult to factorise mentally, you can just use the quadratic equation that can be found in your data booklet) so we can write the inequality as (n-4)(n-1)<0. For inequalities where the co-efficient of n^2 is positive and the the inequality is <0, the range of n must be between the two values of n whereby the factorised expresion equals zero, which are n=1 and n=4. Therefore, the solution is 1<n<4 and we can check this by substituting in n=3, which satisfies the inequality since (3-4)(3-1)=-2<0. Since n is an integer, the expressions n≤3 and n<4 are the same. Therefore, we can write the final answer as either 1<n<4, or n>1 and n≤3.
Answer:
When writing an inequality from a graph, there are a few things we need to do:
Determine the equation of the line. This gives us the general form of our inequality once we remove the equal sign.
Note whether the line is dotted or solid. ...
Use the graph's shading to determine which way you
Given: NQ = NT , QS Bisect NT(∴ NS=ST ) , TV Bisects QN (∴ NV=VQ )
To Prove: QS=TV
Proof: In ΔNQT
NQ=NT

∴ VQ=ST
In a isosceles triangle, If two sides are equal then their opposites angles are equal.
∴ ∠NQT=∠NTQ ( ∵ NQ=NT)
In ΔQST and TVQ
ST=VQ (sides of isosceles triangle)
∠NQT=∠NTQ (Prove above)
QT=TQ (Common)
So, ΔQST ≅ TVQ by SAS congruence property
∴ QS=TV (CPCT)
CPCT: Congruent part of congruence triangles.
Hence Proved