Answer:
Sally is not right
Step-by-step explanation:
Given the two sequences which have their respective
terms as following:
Sequence A. 
Sequence B. 
As per Sally, there exists only one number which is in both the sequences.
To find:
Whether Sally is correct or not.
Solution:
For Sally to be correct, we need to put the
terms of the respective sequences as equal and let us verify that.

When we talk about
terms,
here is a whole number not a fractional number.
But as per the statement as stated by Sally
is a fractional number, only then the two sequences can have a number which is in the both sequences.
Therefore, no number can be in both the sequences A and B.
Hence, Sally is not right.
Answer:
x=35
Step-by-step explanation:
3x+3=108
3x=108-3
3x= 105
x= 105/3
x=35
Answer: 4.24264069
Step-by-step explanation: I think you mean the square root?
Answer:
<h2>n = 8</h2>
Step-by-step explanation:
Given the nth term of an arithmetic sequence to be Tn = a+(n-1)d
a = first term of the sequence
n = number of terms
d = common difference.
Given the first element a = 2 and 22nd to be 14
T22 = a+(22-1)d = 14
a+21d = 14
Substtuting a = 2 into the equation to get d
2+21d = 14
21d = 12
d = 12/21
d = 4/7
The nth term of the sequence given a = 2 and d = 4/7 will be expressed as;
Tn = 2+(n-1)4/7
Given Tn = 6
6 = 2+(n-1)4/7
6 = 2+4/7 n - 4/7
6-2+4/7 = 4/7 n
32/7=4/7 n
32 = 4n
n = 32/4
n = 8