I cannot reach a meaningful solution from the given information. To prove that S was always true, you would have to prove that N was always false. To prove that N was always false you would have to prove that L was always false. For the statement (L ^ T) -> K to be true, you only need K to be true, so L can be either true or false.
Therefore, because of the aforementioned knowledge, I do not believe that you can prove S to be true.
Answer:
TRUE. We need to use the chain rule to find the derivative of the given function.
Step-by-step explanation:
Chain rule to find the derivative,
We have to find the derivative of F(x)
If F(x) = f[g(x)]
Then F'(x) = f'[g(x)].g'(x)
Given function is,
y =
Here g(x) = (2x + 3)
and f[g(x)] = 

y' = 
= 
y' = 
Therefore, it's true that we need to use the chain rule to find the derivative of the given function.
We can plot this data on MS Excel and determine the distribution of these data reflected on the graph. Among these numbers, 50 is the outlier since it is very far from the other numbers ranging from 76 to 83. We can perform interquartile range to determine or verify the outliers in the data set. In this respect, we can see that there is not much distribution seen. The average of all data sets is equal to 96.25. When the outlier (50) is removed, we expect the mean to become higher since a low number was ommitted including high numbers only. Outliers are obtained from special causations such as human errors.
Select Is a Function or Is not a Function to correctly classify each relation.
<span><span>Title Is a Function Is not a Function</span><span><span><span><span>{<span><span>(<span>3, 7</span>)</span>,<span>(<span>3, 6</span>)</span>,<span>(<span>5, 4</span>)</span>,<span>(<span>4, 7</span>)</span></span>}</span></span>
</span><span><span><span>{<span><span>(<span>1, 5</span>)</span>,<span>(<span>3, 5</span>)</span>,<span>(<span>4, 6</span>)</span>,<span>(<span>6, 4</span>)</span></span>}</span></span>
</span><span><span><span>{<span><span>(<span>2, 3</span>)</span>,<span>(<span>4, 2</span>)</span>,<span>(<span>4, 6</span>)</span>,<span>(<span>5, 8</span>)</span></span>}</span></span>
</span><span><span><span>{<span><span>(<span>0, 4</span>)</span>,<span>(<span>3, 2</span>)</span>,<span>(<span>4, 2</span>)</span>,<span>(<span>6, 5</span>)</span></span>}</span></span>
</span></span></span>