1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ikadub [295]
3 years ago
10

A filtration process removes a random proportion of particulates in water to which it is applied. Suppose that a sample of water

is subjected to this process twice. Let x1 be the proportion of the particulates that are removed by the first pass. Let X2 be the proportion of what remains after the first pass that is removed by the second pass. Assume that X1 and X2 are independent random variables with common pdf. f(x) = 4x3, for 0 < x <1 and f(x) = 0 otherwise. Let Y be the proportion of the original particulates that remain in the sample after two passes. Then Y = (1 - X1)(1 - X2). Find E(Y).
Mathematics
1 answer:
Doss [256]3 years ago
3 0

Answer:

E(Y)=\frac{1}{25}

Step-by-step explanation:

Let's start defining the random variables for this exercise :

X_{1}: '' The proportion of the particulates that are removed by the first pass ''

X_{2}: '' The proportion of what remains after the first pass that is removed by the second pass ''

Y: '' The proportion of the original particulates that remain in the sample after two passes ''

We know the relation between the random variables :

Y=(1-X_{1})(1-X_{2})

We also assume that X_{1} and X_{2} are independent random variables with common pdf.

The probability density function for both variables is f(x)=4x^{3} for 0 and f(x)=0 otherwise.

The first step to solve this exercise is to find the expected value for X_{1} and X_{2}.

Because the variables have the same pdf we write :

E(X_{1})= E(X_{2})=E(X)

Using the pdf to calculate the expected value we write :

E(X)=\int\limits^a_b {xf(x)} \, dx

Where a= ∞ and b= - ∞ (because we integrate in the whole range of the random variable). In this case, we will integrate between 0 and 1 ⇒

Using the pdf we calculate the expected value :

E(X)=\int\limits^1_0 {x4x^{3}} \, dx=\int\limits^1_0 {4x^{4}} \, dx=\frac{4}{5}

⇒ E(X)=E(X_{1})=E(X_{2})=\frac{4}{5}

Now we need to use some expected value properties in the expression of Y ⇒

Y=(1-X_{1})(1-X_{2}) ⇒

Y=1-X_{2}-X_{1}+X_{1}X_{2}

Applying the expected value properties (linearity and expected value of a constant) ⇒

E(Y)=E(1)-E(X_{2})-E(X_{1})+E(X_{1}X_{2})

Using that X_{1} and X_{2} have the same expected value E(X) and given that X_{1} and X_{2} are independent random variables we can write E(X_{1}X_{2})=E(X_{1})E(X_{2})   ⇒

E(Y)=E(1)-E(X)-E(X)+E(X_{1})E(X_{2}) ⇒

E(Y)=E(1)-2E(X)+[E(X)]^{2}

Using the value of E(X) calculated :

E(Y)=1-2(\frac{4}{5})+(\frac{4}{5})^{2}=\frac{1}{25}

E(Y)=\frac{1}{25}

We find that the expected value of the variable Y is E(Y)=\frac{1}{25}

You might be interested in
Alex has 48 stickers. This is 6 times the number of stickers Max has. How many stickers does Max have?
Fantom [35]
The opposite if multiplication is division. 48/6 = 8 Max has 8 stickers.
7 0
3 years ago
Read 2 more answers
What type of angles are 4 and 5
vodomira [7]

Answer:

option c. Alternate interior angles

6 0
2 years ago
Read 2 more answers
Simplify the following surd expressions
olasank [31]

Answer:

<h2>see the answers ⤵️</h2>

Step-by-step explanation:

<h3>to understand the solving steps you need to know about</h3>
  • algebra
  • PEMDAS
  • redical
<h3>adding or subtracting with redical experience is nothing but algebraic addition or subtraction</h3><h3>let's solve:</h3>

a)7 \sqrt{3}  - 2 \sqrt{3}  +  \sqrt{3}  - 3\sqrt{3}  \\ 8 \sqrt{3}  - 5 \sqrt{3}  \\ 3 \sqrt{3}

b)5 \sqrt{7}   + 4 \sqrt{7}   - 8  \sqrt{7}  \\ 9 \sqrt{7}  - 8 \sqrt{7}  \\  \sqrt{7}

6 0
3 years ago
Read 2 more answers
I need help on this question can someone help.
leva [86]

Answer:

G. (8,6)

Step-by-step explanation:

remember that EF is four times the length of DE

so the distance between E and D multiplied by 4 should equal F

4 0
2 years ago
What is the third term when you complete the square for the polynomial
Viefleur [7K]

Answer:

x^2 + 8x+16 is (x+4)^2

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • Find the quotient of 2 ÷ 3 8 .
    5·2 answers
  • Find the product ( 6x+4)^2
    10·2 answers
  • What is the solution to the system below? X=7
    9·1 answer
  • The formula for the volume of a cone is v=1/3pir^2h. Find the radius, to the nearest hundredth, of a cone with a height of 3 in.
    14·1 answer
  • 12x15y=4140; x+y= ? <br> solve.
    5·1 answer
  • Determine the period of this Function.
    12·1 answer
  • Suppose we interpret 20÷5 as how much is in each group if there are 5 groups?' Show how you think we could draw a diagram for th
    9·1 answer
  • Kyle works at a donut​ factory, where a​ 10-oz cup of coffee costs 95¢​, a​ 14-oz cup costs​ $1.15, and a​ 20-oz cup costs​ $1.5
    7·1 answer
  • Each of these equations represents the same function written in different forms.
    10·2 answers
  • Lisa buys 3 pints of milk how many cups did Lisa buy?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!