Answer:
First, we can test Solution 1. We know that Sodium Hydroxide is a strong base. If we test acids on blue litmus paper, they will turn red. If we test bases on red litmus paper, they will turn blue. So, you can test all the of the solutions- water, sodium hydroxide and hydrochloric acid with blue and red litmus paper. HCl, Hydrochloric acid is an acid, so it will turn blue litmus paper red. It will not turn red litmus blue. The acids will turn blue litmus paper red. The bases will turn red litmus paper blue. Only water is a neutral liquid, which will not turn blue litmus paper red or red litmus paper blue. It will not change the colour of it. Thus, if you test all the solutions with blue and red litmus paper, you will know which solution is water. Water is the only one which is neutral. It is the only solution which cannot change the colour of any litmus paper. Thus, you can identify it very easily.
Answer is: 2. atomic number.
Atomic number is unique and defines an element. Atomic number (Z) is total number of protons in an atom.
For example, nitrogen atom (N-14) has 7 protons (p⁺), 7 electrons (e⁻) and 7 neutrons (n°). Protons (positive charge) and neutrons are in the nucleus of atom, electrons (negative charge) are bound to the nucleus in spherical shells. Nitrogen is an element with atomic number 7. Mass number (A) is the total number of protons and neutrons in a nucleus. Nitrogen mass number is 14 (A = p⁺ + n°; A = 14).
Answer:
3,5-dimethyl-2-octene
Explanation:
The parent chain will be choosen based on the highest value. In this case, if we count from top to bottom, we'll get seven carbon, however if we count from the second carbon, going left and then down, we'll get eight carbon. So the parent chain is octene
The double bond is located at the second carbon and the methyl groups are located on carbon 3 & 5. Since there are two methyl groups, we add di- in front of methyl to indicate two methyl groups present.
Note: The functional group has to be prioritise and it needed to be a part of the parent chain. In this case, the functional group is the double bond. (alkene)
Answer:
Concentration AgBr at saturation = 7.07 x 10⁻⁷M
Explanation:
Given AgBr(s) => Ag⁺(aq) + Br⁻(aq) ; Ksp = 5 x 10⁻¹³ = [Ag⁺][Br⁻]
I --- 0 0
C --- +x +x
E --- x x
[Ag⁺][Br⁻] = (x)(x) = x² = 5 x 10⁻¹³ => x = SqrRt(5 x 10⁻¹³) = 7.07 x 10⁻⁷M