Answer:
1. pH = 1.23.
2.
Explanation:
Hello!
1. In this case, for the ionization of H2C2O4, we can write:
It means, that if it is forming a buffer solution with its conjugate base in the form of KHC2O4, we can compute the pH based on the Henderson-Hasselbach equation:
Whereas the pKa is:
The concentration of the base is 0.347 M and the concentration of the acid is 0.347 M as well, as seen on the statement; thus, the pH is:
2. Now, since the addition of KOH directly consumes 0.070 moles of acid, we can compute the remaining moles as follows:
It means that the acid remains in excess yet more base is yielded due to the effect of the OH ions provided by the KOH; therefore, the undergone chemical reaction is:
Which is also shown in net ionic notation.
Best regards!
If the substance mixes with water it's polar. If it doesn't it ms non polar.
Answer: The correct answer is A. 11.5 atm. The temperature is held constant at 293 K, therefore, we can use Boyle's Law to determine the initial pressure. Boyle's Law states that there is an inverse relationship between pressure and volume of gases. Therefore, as volume increases, the pressure will decrease and vice versa.
Further Explanation:
Boyle's Law can be mathematically expressed as:
In this problem, we are given the values:
P(initial) = ?
V(initial) = 80 L
P (final) = 0.46 atm
V (final) = 2000 L
Plugging in these values into the equation:
The initial pressure was 11.5 atm. Since the volume increased or expanded, the space where the gas particles move is bigger, so the frequency of collisions with the wall of the container and with other particles are effectively decreased. This, therefore, decreases the pressure from 11.5 to 0.46 atm.
Learn More
- Learn about Charles' Law brainly.com/question/1421697
- Learn about Ideal Gas Law brainly.com/question/6534668
- Learn about Gay - Lusaac's Law brainly.com/question/1358307
Keywords: gas, Boyle's Law, Ideal Gas Law