Consider the following functions. f={(−4,−1),(1,1),(−3,−2),(−5,2)} and g={(1,1),(2,−3),(3,−1)}: Find (f−g)(1). 
                fenix001 [56]             
         
        
Answer:
0
Step-by-step explanation:
Subtraction of functions has the property:
f={(−4,−1),(1,1),(−3,−2),(−5,2)}  has (1,1) means that f maps 1 to 1, therefore f(1) = 1 
g={(1,1),(2,−3),(3,−1)}  has (1,1), means that g maps 1 to 1, therefore g(1)=1
As a Result, since (f−g)(1) = f(1) - g(1), we have (f−g)(1) = 1-1=0
 
        
             
        
        
        
Answer:
The range is 40.
Step-by-step explanation:
Range is just the largest number minus the smallest.
70 - 30 = 40
 
        
             
        
        
        
Answer:
 I think the answer is 2n-5
(-3n + 2)+(5n - 7)
-3n+5n=2n
2+(-7)=-5
 
        
             
        
        
        
Parentheses
Exponents
Multiple 
Divide 
Add
Subtract
        
                    
             
        
        
        
Answer:
24.5 unit²
Step-by-step explanation:
Area of ∆ 
 = ½ | x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂) | 
 = ½ | (-1)(3 -(-4)) + 6(-4 -3) + (-1)(3 - 3) | 
 = ½ | -7 - 42 | 
 = ½ | - 49 | 
 = ½ (49) 
 = 24.5 unit²
 <u>Method 2:</u> 
Let the vertices are A, B and C. Using distance formula: 
AB = √(-1-6)² + (3-3)² = 7 
BC = √(-6-1)² + (-4-3)² = 7√2 
AC = √(-1-(-1))² + (4-(-3))² = 7 
Semi-perimeter = (7+7+7√2)/2 
 = (14+7√2)/2 
Using herons formula: 
Area = √s(s - a)(s - b)(s - c) 
 here,
 s = semi-perimeter = (14 + 7√2)/2
s - a = S - AB = (14+7√2)/2 - 7 = (7 + √2)/2
s - b = (14+7√2)/2 - 7√2 = (14 - 7√2)/2 
s - c = (14+7√2)/2 - 7 = (7 + √2)/2 
Hence, on solving for area using herons formula, area = 49/2 = 24.5 unit²