Answer:
<em>The end of the ramp is 38.416 m high</em>
Explanation:
<u>Horizontal Motion
</u>
When an object is thrown horizontally with an initial speed v and from a height h, it follows a curved path ruled by gravity.
The maximum horizontal distance traveled by the object can be calculated as follows:
If the maximum horizontal distance is known, we can solve the above equation for h:
The skier initiates the horizontal motion at v=25 m/s and lands at a distance d=70 m from the base of the ramp. The height is now calculated:
h= 38.416 m
The end of the ramp is 38.416 m high
Answer:
the water will boil and change into a gas
Explanation:
This is because it is exothermic and releases the energy into the surroundings and the fact that water boils at 100 degrees Celsius
Answer: WAIT WHATTTT i have that same test due today and the answer is in explanation
Explanation:
Bike, truck train. we are in the same school i think. Its imma say the incisal JMES Im Lusi i used to help in the library
Answer:
2.23 × 10^6 g of F- must be added to the cylindrical reservoir in order to obtain a drinking water with a concentration of 0.8ppm of F-
Explanation:
Here are the steps of how to arrive at the answer:
The volume of a cylinder = ((pi)D²/4) × H
Where D = diameter of the cylindrical reservoir = 2.02 × 10^2m
H = Height of the reservoir = 87.32m
Therefore volume of cylindrical reservoir = (3.142×202²/4)m² × 87.32m = 2798740.647m³
1ppm = 1g/m³
0.8ppm = 0.8 × 1g/m³
= 0.8g/m³
Therefore to obtain drinking water of concentration 0.8g/m³ in a reservoir of volume 2798740.647m³, F- of mass = 0.8g/m³ × 2798740.647m³ = 2.23 × 10^6 g must be added to the tank.
Thank you for reading.
Answer:
240 Ω
Explanation:
Resistance: This can be defined as the opposition to the flow of current in an electric field. The S.I unit of resistance is ohms (Ω).
The expression for resistance power and voltage is give as,
P = V²/R.......................... Equation 1
Where P = Power, V = Voltage, R = Resistance
Making R the subject of the equation,
R = V²/P.................... Equation 2
Given: V = 120 V, P = 60 W.
Substitute into equation 2
R = 120²/60
R = 240 Ω
Hence the resistance of the bulb = 240 Ω