Answer:
1 / f = 1 / o + 1 / i
1 / image distance + 1 / object distance = 1 focal length
If the object distance is large the image will be at about the focal length
The value of 1 / f is fixed for any one particular lense
As the object distance decreases the image must increase
The above equation can also be written as
o i / (i + o) = f or i / (i / o + 1) = f
If for instance o was very large the image would be at the focal length
Answer:
yes
Explanation:
it makes up everything but you cant see it with out a microscope
Hello. This question is incomplete. The full question is:
Two blocks are stacked on top of each other on the floor of an elevator. For each of the following situations, select the correct relationship between the magnitudes of the two forces given.
The elevator is moving downward at a constant speed.
The magnitude of the force of the bottom block on the top block is _____ the magnitude of the force of the earth on the top block.
Answer:
The magnitude of the force of the bottom block on top block is equal to the magnitude of the force of the top block on bottom block.
Explanation:
As the elevator is descending, there is only a normal force being applied to the lower surface of the block. This force has a magnitude equal to the force of the upper block, because the only acceleration that is acting in this case is the force of gravity. From that force, the resulting force is zero.
<span>Heat comes from stove flame to the sauce pan by radiation through infrared energy, heat conducts the metal of the sauce pan; Convection brings cool water to the hot surface at the bottom of the hot sauce pan until all or most of the water is hot enough to boil.</span>
Answer:
1. The best definition of refraction is ____.
a. passing through a boundary
b. bouncing off a boundary
c. changing speed at a boundary
d. changing direction when crossing a boundary
Answer: D
Bouncing off a boundary (choice b) is reflection. Refraction involves passing through a boundary (choice a) and changing speed (choice c); however, a light ray can exhibit both of these behaviors without undergoing refraction (for instance, if it approaches the boundary along the normal). Refraction of light must involve a change in direction; the path must be altered at the boundary.