Answer:
The work function ϕ of the metal = 53.4196 x 10⁻¹⁶ J
Explanation:
When light is incident on a photoelectric material like metal, photoelectrons are emitted from the surface of the metal. This process is called photoelectric effect.
The relationship between the maximum kinetic energy (
) of the photoelectrons to the frequency of the absorbed photons (f) and the threshold frequency (f₀) of the photoemissive metal surface is:
= h(f − f₀)
= hf - hf₀
E is the energy of the absorbed photons: E = hf
ϕ is the work function of the surface: ϕ = hf₀
= E - ϕ
Frequency f = 8.12×10¹⁸ Hz
Maximum kinetic energy
= 4.16×10⁻¹⁷ J
Speed of light c = 3 x 10⁸ m/s
Planck's constant h = 6.63 × 10⁻³⁴ Js
E = hf = 6.63 × 10⁻³⁴ x 8.12×10¹⁸
E = 53.8356 x 10⁻¹⁶ J
from
= E - ϕ ;
ϕ = E - 
ϕ = 53.8356 x 10⁻¹⁶ - 4.16×10⁻¹⁷
ϕ = 53.4196 x 10⁻¹⁶ J
The work function of the metal ϕ = 53.4196 x 10⁻¹⁶ J
Force of friction=75 N
Explanation:
we use Newton's second law of motion
F- Ff= ma
F = applied force=250 N
Ff= force of friction
a= acceleration= 5.83 m/s²
m= mass=30 kg
250- Ff= 30 (5.83)
Ff=250-30(5.83)
Ff=250-175
Ff=75 N
The answer is A. waterfall
To be considered as an engine , it should be a Man-made objects that could be used to produce power that creates motions.
From all the options above could be used to produce such power, but the waterfall is not made by mandkind
Question 17:
At point A, the snowboarder is on the point of moving and the potential energy would be at its maximum (the particle has to work against the force of gravity). The kinetic energy is zero since the snowboarder is not yet moving (has no velocity).
Question 18:
At point C, the kinetic energy will be zero and the potential energy will be minimum. As the snowboarder moves from point C to B, there will be a transfer between the kinetic energy to the potential energy. At point B, the potential energy will be back to maximum.
<span>The magnitude of the gravitational force between two bodies is the product of their masses divided by the square of the distance between them. So we have F = M1*M2 / r^2. M1 = 7.503 * 10e24 and M2 = 2.703 * 10e22 and r= 2.803 * 10e8; r^2 = 5.606 *10e16. So we have 7.503 *2.703 *10^(24+22) = 20.280 * 10^(46). Then we divide our answer by 5.606 * 10e16 which is the distance ; then we have 3.6175 * 10 e (46- 16) = 3.6175 * 10e30.
To find the acceleration we use Newton's second law F = ma. F is 3.6175 * 10e30 and M is 7.503 * 10e24 so a = F/M and then we have 3.6175/7.503 * 10e (30-24) = 0.48 * 10e6.
Similarly for moon, we have a = 3.6715/2.703 * 10e(30-22). = 1.358 * 10e8</span>