Answer:
The ratio is 9.95
Solution:
As per the question:
Amplitude, 
Wavelength, 
Now,
To calculate the ratio of the maximum particle speed to the speed of the wave:
For the maximum speed of the particle:

where
= angular speed of the particle
Thus

Now,
The wave speed is given by:

Now,
The ratio is given by:


Answer:
<em>The magnitude of the force is 10 N</em>
Explanation:
<u>Coulomb's Law</u>
The electrostatic force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between the two objects.
Written as a formula:

Where:

q1, q2 = the objects' charge
d= The distance between the objects
We have two identical charges of q1=q2=1 c separated by d=30000 m, thus the magnitude of the force is:


F = 10 N
The magnitude of the force is 10 N
Answer:
the correct one is the first, the refractive index of the two materials must be the same
Explanation:
When a beam of light passes through two materials, it must comply with the law of refraction
n₁ sin θ₁ = n₂ sin θ₂
where n₁ and n₂ are the refractive indices of each medium.
In this case, it indicates that the light does not change direction, so the input and output angle of the interface must be the same,
θ₁ = θ₂ = θ
substituting
n₁ = n₂
therefore the refractive index of the two materials must be the same
When reviewing the answers, the correct one is the first
Answer:
31.404 seconds
Explanation:
To answer this equation, SUVAT is your best option utilizing and rearranging the known values to solve for the unknown.
here we have the values for
s=895
u=22
v=35
t= the unknown value
in this instant the equation s=0.5 x (u+v)t is the best equation to use
so we sub in the known values
895=0.5 x (22+35)t
rearrange to solve for t
895=28.5t
895/28.5=t
t=31.404 seconds (rounded to 3 decimal places)