1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ch4aika [34]
3 years ago
15

PLEASE HELP!!!: Parallel lines 1 and m are intersected

Mathematics
1 answer:
bonufazy [111]3 years ago
6 0
The answer is B because if you add the to angles together you create a straight line.
You might be interested in
Let and be differentiable vector fields and let a and b be arbitrary real constants. Verify the following identities.
elena-14-01-66 [18.8K]

The given identities are verified by using operations of the del operator such as divergence and curl of the given vectors.

<h3>What are the divergence and curl of a vector field?</h3>

The del operator is used for finding the divergence and the curl of a vector field.

The del operator is given by

\nabla=\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}

Consider a vector field F=x\^i+y\^j+z\^k

Then the divergence of the vector F is,

div F = \nabla.F = (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(x\^i+y\^j+z\^k)

and the curl of the vector F is,

curl F = \nabla\times F = \^i(\frac{\partial Fz}{\partial y}- \frac{\partial Fy}{\partial z})+\^j(\frac{\partial Fx}{\partial z}-\frac{\partial Fz}{\partial x})+\^k(\frac{\partial Fy}{\partial x}-\frac{\partial Fx}{\partial y})

<h3>Calculation:</h3>

The given vector fields are:

F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k

1) Verifying the identity: \nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

Consider L.H.S

⇒ \nabla.(aF1+bF2)

⇒ \nabla.(a(M\^i + N\^j + P\^k) + b(Q\^i + R\^j + S\^k))

⇒ \nabla.((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the dot product between these two vectors,

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(1)

Consider R.H.S

⇒ a\nabla.F1+b\nabla.F2

So,

\nabla.F1=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(M\^i + N\^j + P\^k)

⇒ \nabla.F1=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}

\nabla.F2=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(Q\^i + R\^j + S\^k)

⇒ \nabla.F1=\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z}

Then,

a\nabla.F1+b\nabla.F2=a(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z})+b(\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z})

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(2)

From (1) and (2),

\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

2) Verifying the identity: \nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Consider L.H.S

⇒ \nabla\times(aF1+bF2)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times(a(M\^i+N\^j+P\^k)+b(Q\^i+R\^j+S\^k))

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times ((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the cross product,

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y}) ...(3)

Consider R.H.S,

⇒ a\nabla\times F1+b\nabla\times F2

So,

a\nabla\times F1=a(\nabla\times (M\^i+N\^j+P\^k))

⇒ \^i(\frac{\partial aP\^k}{\partial y}- \frac{\partial aN\^j}{\partial z})+\^j(\frac{\partial aM\^i}{\partial z}-\frac{\partial aP\^k}{\partial x})+\^k(\frac{\partial aN\^j}{\partial x}-\frac{\partial aM\^i}{\partial y})

a\nabla\times F2=b(\nabla\times (Q\^i+R\^j+S\^k))

⇒ \^i(\frac{\partial bS\^k}{\partial y}- \frac{\partial bR\^j}{\partial z})+\^j(\frac{\partial bQ\^i}{\partial z}-\frac{\partial bS\^k}{\partial x})+\^k(\frac{\partial bR\^j}{\partial x}-\frac{\partial bQ\^i}{\partial y})

Then,

a\nabla\times F1+b\nabla\times F2 =

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y})

...(4)

Thus, from (3) and (4),

\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Learn more about divergence and curl of a vector field here:

brainly.com/question/4608972

#SPJ4

Disclaimer: The given question on the portal is incomplete.

Question: Let F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k be differential vector fields and let a and b arbitrary real constants. Verify the following identities.

1)\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2\\2)\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

8 0
1 year ago
Which number is the best approximation for π/3 : 1, 1.03, 1.05, or 1.07?​
Evgen [1.6K]

Answer:

1,05

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Plz hurry!!!! thank you!!!!
Nikitich [7]

Answer:

Area of trapezium = 4.4132 R²

Step-by-step explanation:

Given, MNPK is a trapezoid

MN = PK and ∠NMK = 65°

OT = R.

⇒ ∠PKM = 65° and also ∠MNP = ∠KPN = x (say).

Now, sum of interior angles in a quadrilateral of 4 sides = 360°.

⇒ x + x + 65° + 65° = 360°

⇒ x = 115°.

Here, NS is a tangent to the circle and ∠NSO = 90°

consider triangle NOS;

line joining O and N bisects the angle ∠MNP

⇒ ∠ONS = \frac{115}{2} = 57.5°

Now, tan(57.5°) = \frac{OS}{SN}

⇒ 1.5697 = \frac{R}{SN}

⇒ SN = 0.637 R

⇒ NP = 2×SN = 2× 0.637 R = 1.274 R

Now, draw a line parallel to ST from N to line MK

let the intersection point be Q.

⇒ NQ = 2R

Consider triangle NQM,

tan(∠NMQ) = \frac{NQ}{QM}

⇒ tan65° = \frac{NQ}{QM}

⇒ QM = \frac{2R}{2.1445}

QM = 0.9326 R .

⇒ MT = MQ + QT

          = 0.9326 R + 0.637 R  (as QT = SN)

⇒ MT = 1.5696 R

⇒ MK = 2×MT = 2×1.5696 R = 3.1392 R

Now, area of trapezium is (sum of parallel sides/ 2)×(distance between them).

⇒ A = (\frac{NP + MK}{2}) × (ST)

       = (\frac{1.274 R + 3.1392 R}{2}) × 2 R

       = 4.4132 R²

⇒ Area of trapezium = 4.4132 R²

5 0
3 years ago
Help this question has time please its myfinal exam
Zarrin [17]

Answer:

(x,y) = (-0.5,0.5)

Step-by-step explanation:

Given

See attachment

Required

The solution

The solution is at the point where the two lines meet.

The lines meet at:

x = -0.5 and y = 0.5

So, the solution is:

(x,y) = (-0.5,0.5)

4 0
2 years ago
PLEASE HELP PICTURE IS SHOWN
marshall27 [118]
AAS, HA
Hope this helps!
3 0
3 years ago
Other questions:
  • If the hypotenuse of a right triangle is 125 units long and the short leg adjacent to the right angle is 32 units long, then det
    12·2 answers
  • What location on a component usually has the coordinates (0,0)?
    8·1 answer
  • 24% is close to 25% how could you use this fact to check that 50 is a reasonable number for the total number of students in the
    7·1 answer
  • What value of x is in the solution set of 3(x – 4) 5x + 2?<br> O-10<br> O -5<br> O 5<br> O 10
    6·2 answers
  • 21÷7=3 what is the meaning of the unknown factor and quotient?
    14·1 answer
  • Manuel and Sonja are shopping for school supplies. Manuel is buying 5 notebooks and 3 pens at a cost of $21. Sonja is buying 6 n
    12·1 answer
  • Simplify using order of operations<br>5.3-6.3+5²​
    5·2 answers
  • This is for literal equations <br> A=4 πr2 (r2)<br><br> i think you solve for r2
    12·1 answer
  • If (10,3) and (6,31) are two anchor points on a trend like, then find the equation of the line
    11·1 answer
  • Whats 0.3(x-5)=7.2 as a numerical
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!