Answer:
A) 
General Formulas and Concepts:
<u>Calculus</u>
Discontinuities
- Removable (Hole)
- Jump
- Infinite (Asymptote)
Integration
- Integrals
- Definite Integrals
- Integration Constant C
- Improper Integrals
Step-by-step explanation:
Let's define our answer choices:
A) 
B) 
C) 
D) None of these
We can see that we would have a infinite discontinuity if x = 2/3, as it would make the denominator 0 and we cannot divide by 0. Therefore, any interval that includes the value 2/3 would have to be rewritten and evaluated as an improper integral.
Of all the answer choices, we can see that A's bounds of integration (interval) includes x = 2/3.
∴ our answer is A.
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e
30. is just asking where the two equations graphed intersect each other...
x = -3 and x = 1 for intersections.
|-3| is 3 because......
<u>Absolute Value:</u>
In mathematics, the absolute value or modulus |x| of a real number x is the non-negative value of x without regard to its sign. Namely, |x| = x for a positive x, |x| = −x for a negative x, and |0| = 0. For example, the absolute value of 3 is 3, and the absolute value of −3 is also 3.
Answer:
The equivalent expression for |b| > 2 is {b : b < -2} ∪ {b : b > 2}.
Step-by-step explanation:
The expression |x| < a is equivalent to -a < x < a and the expression |x| > a is equivalent to {x : x < -a} ∪ {x : x > a}.
This means, the set of all points that satisfy the inequality |x| < a is the set of all points between -a and a exclusive of -a and a.
The set of all points that satisfy the inequality |x| > a is the set of all points that are less than -a and the set of all points that are greater than a.
Hence, the equivalent expression for |b| > 2 is {b : b < -2} ∪ {b : b > 2}.