The solution to the system of equations x + 2y = 1 and -3x-2y = 5 is:
x = -3, y = 2
The given system of equations:
x + 2y = 1............(1)
-3x - 2y = 5..........(2)
This can be written in matrix form as shown:
![\left[\begin{array}{ccc}1&2\\-3&-2\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}1\\5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%5C%5C-3%26-2%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
Find the determinant of ![\left[\begin{array}{ccc}1&2\\-3&-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%5C%5C-3%26-2%5Cend%7Barray%7D%5Cright%5D)

![\triangle_x = \left[\begin{array}{ccc}1&2\\5&-2\end{array}\right]\\\triangle_x = 1(-2)-2(5)\\\triangle_x = -2-10\\\triangle_x =-12](https://tex.z-dn.net/?f=%5Ctriangle_x%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%5C%5C5%26-2%5Cend%7Barray%7D%5Cright%5D%5C%5C%5Ctriangle_x%20%3D%201%28-2%29-2%285%29%5C%5C%5Ctriangle_x%20%3D%20-2-10%5C%5C%5Ctriangle_x%20%3D-12)
![\triangle_y = \left[\begin{array}{ccc}1&1\\-3&5\end{array}\right]\\\triangle_y = 1(5)-1(-3)\\\triangle_y = 5 + 3\\\triangle_y =8](https://tex.z-dn.net/?f=%5Ctriangle_y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C-3%265%5Cend%7Barray%7D%5Cright%5D%5C%5C%5Ctriangle_y%20%3D%201%285%29-1%28-3%29%5C%5C%5Ctriangle_y%20%3D%205%20%2B%203%5C%5C%5Ctriangle_y%20%3D8)


The solution to the system of equations x + 2y = 1 and -3x-2y = 5 is:
x = -3, y = 2
Learn more here: brainly.com/question/4428059
Answer: 1 is not a perfect square. 3 is the only prime number one less than a square.
It would be A=45, but i don't understand why you have a 3 above your answer
Answer:
w=4
Step-by-step explanation:
2(48)+2(8w)+2(6w)=208
1) Start by Distributing the value outside of the parenthesis:
96+16w+12w=208
2) Combine alike terms:
96+28w=208
3) Subtract 96 from both sides:
28w=112
4)Divide both sides by 28 to isolate w:
w=4
Let me know if you do not understand :)
Use the distance formula:

(6, -2), (-2, -12)

⇒


⇒


= 12.8
The distance between points T and U is
12.8 units.