Answer:
See explanation
Step-by-step explanation:
Let x be the number of simple arrangements and y be the number of grand arrangements.
1. The florist makes at least twice as many of the simple arrangements as the grand arrangements, so

2. A florist can make a grand arrangement in 18 minutes
hour, then he can make y arrangements in
hours.
A florist can make a simple arrangement in 10 minutes
hour, so he can make x arrangements in
hours.
The florist can work only 40 hours per week, then

3. The profit on the simple arrangement is $10, then the profit on x simple arrangements is $10x.
The profit on the grand arrangement is $25, then the profit on y grand arrangements is $25y.
Total profit: $(10x+25y)
Plot first two inequalities and find the point where the profit is maximum. This point is point of intersection of lines
and 
But this point has not integer coordinates. The nearest point with two integer coordinates is (126,63), then the maximum profit is

I don’t know sorry but like how’s yoonbum doing? Also like wanna be friends?
Answer:
a) SPAZ is equilateral.
b) Diagonals SA and PZ are perpendicular to each other.
c) Diagonals SA and PZ bisect each other.
Step-by-step explanation:
At first we form the triangle with the help of a graphing tool and whose result is attached below. It seems to be a paralellogram.
a) If figure is equilateral, then SP = PA = AZ = ZS:
![SP = \sqrt{[4-(-4)]^{2}+[(-2)-(-4)]^{2}}](https://tex.z-dn.net/?f=SP%20%3D%20%5Csqrt%7B%5B4-%28-4%29%5D%5E%7B2%7D%2B%5B%28-2%29-%28-4%29%5D%5E%7B2%7D%7D)

![PA = \sqrt{(6-4)^{2}+[6-(-2)]^{2}}](https://tex.z-dn.net/?f=PA%20%3D%20%5Csqrt%7B%286-4%29%5E%7B2%7D%2B%5B6-%28-2%29%5D%5E%7B2%7D%7D)



![ZS = \sqrt{[-4-(-2)]^{2}+(-4-4)^{2}}](https://tex.z-dn.net/?f=ZS%20%3D%20%5Csqrt%7B%5B-4-%28-2%29%5D%5E%7B2%7D%2B%28-4-4%29%5E%7B2%7D%7D)

Therefore, SPAZ is equilateral.
b) We use the slope formula to determine the inclination of diagonals SA and PZ:




Since
, diagonals SA and PZ are perpendicular to each other.
c) The diagonals bisect each other if and only if both have the same midpoint. Now we proceed to determine the midpoints of each diagonal:








Then, the diagonals SA and PZ bisect each other.