Answer:
5.4
Step-by-step explanation:
3x+38=10x
-3x -3x
38=7x
x=5.4
Brainliest pleaseeeeeee
Answer: the function g(x) has the smallest minimum y-value.
Explanation:
1) The function f(x) = 3x² + 12x + 16 is a parabola.
The vertex of the parabola is the minimum or maximum on the parabola.
If the parabola open down then the vertex is a maximum, and if the parabola open upward the vertex is a minimum.
The sign of the coefficient of the quadratic term tells whether the parabola opens upward or downward.
When such coefficient is positive, the parabola opens upward (so it has a minimum); when the coefficient is negative the parabola opens downward (so it has a maximum).
Here the coefficient is positive (3), which tells that the vertex of the parabola is a miimum.
Then, finding the minimum value of the function is done by finding the vertex.
I will change the form of the function to the vertex form by completing squares:
Given: 3x² + 12x + 16
Group: (3x² + 12x) + 16
Common factor: 3 [x² + 4x ] + 16
Complete squares: 3[ ( x² + 4x + 4) - 4] + 16
Factor the trinomial: 3 [(x + 2)² - 4] + 16
Distributive property: 3 (x + 2)² - 12 + 16
Combine like terms: 3 (x + 2)² + 4
That is the vertex form: A(x - h)² + k, whch means that the vertex is (h,k) = (-2, 4).
Then the minimum value is 4 (when x = - 2).
2) The othe function is <span>g(x)= 2 *sin(x-pi)
</span>
The sine function goes from -1 to + 1, so the minimum value of sin(x - pi) is - 1.
When you multiply by 2, you just increased the amplitude of the function and obtain the new minimum value is 2 (-1) = - 2
Comparing the two minima, you have 4 vs - 2, and so the function g(x) has the smallest minimum y-value.
F(-5) = -5^2 - 2*(-5) - 7 = 25 - (-10) - 7 = 25 + 10 - 7 = 25 + 3 = 28
Answer:
6x^2 - 10x - 24
Step-by-step explanation:
- Do 3x times 2x which is 6x^2
- Do 3x times - 6 which is -18x
- Do 4 times 2x which is 8x
- Do 4 times - 6 which is - 24
- You get 6x^2 - 18x + 8x - 24
- Simplyify to get the answer
3x^2 - 7x + 12 = 0 ....subtract 12 from both sides
3x^2 - 7x = -12 ....divide both sides by 3 to get x^2 by itself
x^2 - 7/3x = -4
His work is not accurate because he divided the second term by 4 instead of 3.