Hey there! I'm happy to help!
The percent in the problem is 60% (as it has a percent time).
The base is the number we start with, so it is 485.
The amount is the percent of the base. As a decimal, 60% is 0.6. So, we just multiply this by 485.
0.6×485=291
Therefore, the amount is 291.
AMOUNT: 291
BASE: 485
PERCENT: 60%
Have a wonderful day! :D
Answers:
- Total equation: x+y = 80
- Legs equation: 2x+4y = 248
- How many ducks? 36
- How many cows? 44
====================================================
Further explanation:
- x = number of ducks
- y = number of cows
x+y = 80 is the total equation (ie the head count equation) since we assume each animal has 1 head, and there are 80 heads total.
That equation can be solved to y = 80-x after subtracting x from both sides.
The legs equation is 2x+4y = 248 because...
- 2x = number of legs from all the ducks only
- 4y = number of legs from all the cows only
- 2x+4y = total number of legs from both types of animals combined
We're told there are 248 legs overall, so that's how we ended up with 2x+4y = 248
------------
Let's plug y = 80-x into the second equation and solve for x.
2x+4y = 248
2x+4( y ) = 248
2x+4( 80-x ) = 248
2x+320-4x = 248
-2x+320 = 248
-2x = 248-320
-2x = -72
x = -72/(-2)
x = 36
There are 36 ducks
Now use this x value to find y
y = 80-x
y = 80-36
y = 44
There are 44 cows.
------------
Check:
36 ducks + 44 cows = 80 animals total
36*2 + 44*4 = 72 + 176 = 248 legs total
The answers are confirmed.
Given:
Point S is translated 5 units to the left and 12 units up to create point S'.
To find:
The distance between the points S and S'.
Solution:
Point S is translated 5 units to the left and 12 units up to create point S'.
The diagram for the given problem is shown below.
From the below figure it is clear that the distance between the point S and S' is the height of a right triangle whose legs are 5 units and 12 units.
By Pythagoras theorem,




Taking square root on both sides.


Therefore, the distance between S and S' is 13 units.
Answer:
maybe the answer is 12 units.
1. Distribute
1/125 x 5n - 1/125
2. Simplify 1/125 x 5n to n/25
n/25 - 1/125