Abigail and Spencer are correct, Lauren is incorrect.
Answer:
who?
Step-by-step explanation:
Answer:
Demand is Elastic when Price > 200 ; Demand is inelastic when Price < 200
Step-by-step explanation:
p = 400 - 4x
4x = 400 - p
x = (400 - p) / 4 → x = 100 - p/4
Elasticity of demand [ P ed ] = (Δx / Δp) x (p / x)
Δx / Δp [Differentiating x w.r.t p] = 0 - 1/4 → = -1/4
P ed = <u>-1</u> x<u> p </u>
4 (400 - p)/4
= <u>-1</u> x <u> 4p </u> = -p / (400-p)
4 (400 - p)
Price Elasticity of demand : only magnitude is considered, negative sign is ignored (due to negative price demand relationship as per law of demand).
So, Ped = p / (400 - p)
Demand is Elastic when P.ed > 1
p / (400-p) > 1
p > 400 - p
p + p > 400 → 2p > 400
p > 400 / 2 → p > 200
Demand is inelastic when P.ed < 1
p / (400-p) < 1
p < 400 - p
p + p < 400 → 2p < 400
p < 400 / 2 → p < 200
Answer:
By changing 0.65 miles into fraction we got 65/100 and it's simplest form is 13/20 .
(a) It looks like the ODE is
<em>y'</em> = 4<em>x</em> √(1 - <em>y </em>^2)
which is separable:
d<em>y</em>/d<em>x</em> = 4<em>x</em> √(1 - <em>y</em> ^2) => d<em>y</em>/√(1 - <em>y</em> ^2) = 4<em>x</em> d<em>x</em>
Integrate both sides. On the left, substitute <em>y</em> = sin(<em>t </em>) and d<em>y</em> = cos(<em>t</em> ) d<em>t</em> :
∫ d<em>y</em>/√(1 - <em>y</em> ^2) = ∫ 4<em>x</em> d<em>x</em>
∫ cos(<em>t</em> ) / √(1 - sin^2(<em>t</em> )) d<em>t</em> = ∫ 4<em>x</em> d<em>x</em>
∫ cos(<em>t</em> ) / √(cos^2(<em>t</em> )) d<em>t</em> = ∫ 4<em>x</em> d<em>x</em>
∫ cos(<em>t</em> ) / |cos(<em>t</em> )| d<em>t</em> = ∫ 4<em>x</em> d<em>x</em>
Since we want the substitutiong to be reversible, we implicitly assume that -<em>π</em>/2 ≤ <em>t</em> ≤ <em>π</em>/2, for which cos(<em>t</em> ) > 0, and in turn |cos(<em>t</em> )| = cos(<em>t</em> ). So the left side reduces completely and we get
∫ d<em>t</em> = ∫ 4<em>x</em> d<em>x</em>
<em>t</em> = 2<em>x</em> ^2 + <em>C</em>
arcsin(<em>y</em>) = 2<em>x</em> ^2 + <em>C</em>
<em>y</em> = sin(2<em>x</em> ^2 + <em>C </em>)
(b) There is no solution for the initial value <em>y</em> (0) = 4 because sin is bounded between -1 and 1.