Answer:
There's an option to insert pictures. You have to click on a 'paper pin' like symbol
Step-by-step explanation:
See, I've inserted one pic.
Equation of line passing through (2, -2) and parallel to 2x+3y = -8 is 
<h3><u>
Solution:</u></h3>
Need to write equation of line parallel to 2x+3y=-8 and passes through the point (2, -2)
Generic slope intercept form of a line is given by y = mx + c
where "m" = slope of the line and "c" is the y - intercept
Let’s first find slope intercept form of 2x+3y=-8 to get slope of line

On comparing above slope intercept form of given equation with generic slope intercept form y = mx + c,

We know that slopes of parallel lines are always equal
So the slope of line passing through (2, -2) is also 
Equation of line passing through
and having slope of m is given by


Substituting the values in equation of line we get



Hence equation of line passing through (2 , -2) and parallel to 2x + 3y = -8 is given as 
Answer:
54
Step-by-step explanation:
x is half the difference of the two arcs:
x = (136 -28)/2 = 54
The value of x is 54.
Answer:
y= (x+5)^2 +7
Step-by-step explanation:
First, you should solve for

, which equals

. Now, solve the integral of

=

, to get that

. You can check this by taking the integral of what you got. Now by the Fundamental Theorem
![\int\limits^2_0 {4x} \, dx=[2x^2] ^{2}_{0}=2(2)^{2}-2(0)^2=8](https://tex.z-dn.net/?f=%20%5Cint%5Climits%5E2_0%20%7B4x%7D%20%5C%2C%20dx%3D%5B2x%5E2%5D%20%5E%7B2%7D_%7B0%7D%3D2%282%29%5E%7B2%7D-2%280%29%5E2%3D8)
.
This should be the answer to your question, if I understood what you were asking correctly.