Answer:
Therefore, equation of the line that passes through (16,-7) and is perpendicular to the line
is
Step-by-step explanation:
Given:
To Find:
Equation of line passing through ( 16, -7) and is perpendicular to the line
Solution:
...........Given

Comparing with,
Where m =slope
We get
We know that for Perpendicular lines have product slopes = -1.

Substituting m1 we get m2 as

Therefore the slope of the required line passing through (16 , -7) will have the slope,
Now the equation of line in slope point form given by
Substituting the point (16 , -7) and slope m2 we will get the required equation of the line,
Therefore, equation of the line that passes through (16,-7) and is perpendicular to the line
is
Answer:One solution was found : x = 12. Rearrange: Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the ...
Step-by-step explanation:
Answer:
Area of equilateral triangle = 81√3 cm²
Step-by-step explanation:
Given:
Perimeter of an equilateral triangle = 54 cm
Find:
Area of equilateral triangle
Computation:
Perimeter of an equilateral triangle = 3 x Side
54 = 3 x Side
Side of equilateral triangle = 54 / 3
Side of equilateral triangle = 18 cm
Area of equilateral triangle = [√3/4]side²
Area of equilateral triangle = [√3/4][18]²
Area of equilateral triangle = [√3/4][324]
Area of equilateral triangle = [√3][81]
Area of equilateral triangle = 81√3 cm²
(x+7)(x+3) so therefore you set each equation = 0...
x + 7 = 0
x + 3= 0
and solve
x = -3
x = -7
I believe it is -1 since -3 times -1 equals 3 and the rate of change is based on the slope of a line