(tanθ + cotθ)² = sec²θ + csc²θ
<u>Expand left side</u>: tan²θ + 2tanθcotθ + cot²θ
<u>Evaluate middle term</u>: 2tanθcotθ =
= 2
⇒ tan²θ + 2+ cot²θ
= tan²θ + 1 + 1 + cot²θ
<u>Apply trig identity:</u> tan²θ + 1 = sec²θ
⇒ sec²θ + 1 + cot²θ
<u>Apply trig identity:</u> 1 + cot²θ = csc²θ
⇒ sec²θ + csc²θ
Left side equals Right side so equation is verified
Answer: w=−4
Step-by-step explanation:
hoped this helped
Answer:
1.88 pounds
Step-by-step explanation:
First, find the total amount of sugar, since there were 2 shipments
22.56(2)
= 45.12
Then, divide this by 24:
45.12/24
= 1.88
So, each canister had 1.88 pounds of sugar
The left sum would be f0+f1+f2+f3
The right sum would be f1+f2+f3+f4
The trapezoidal rule value is:
(f0+f1)/2 + (f1+f2)/2+(f2+f3)/2 +(f3+f4)/2
This would put the trapezoidal rule in the middle , which makes the answer:
Lower sum < Trapezoidal rule Value < Upper sum
Let's begin by breaking each number down into its prime factors: 4 = 2 x 2 5 = 5 6 = 2 x 3 Next, let's determine the Lowest Common Multiple (LCM) of the numbers 4, 5, and 6 by multiplying all common and unique prime factors of each number: common prime factors: 2 unique prime factors: 2,5,3 LCM = 2 x 2 x 5 x 3 = 60 Next, let's determine how many times 60 goes into 10,000 (excluding remainder): 10,000/60 = 166 and 2/3 Multiples of ALL 3 numbers (4,5,6) = 166 Next, let's determine the Lowest Common Multiple (LCM) of the numbers 4 and 5 by multiplying all common and unique prime factors of each number: common prime factors: none
unique prime factors: 2 x 2 x 5
LCM = 2 x 2 x 5 = 20 Next, let's determine how many times 20 goes into 10,000:
10,000/20 = 500
Multiples of BOTH numbers (4 and 5) = 500 Finally, let's subtract the multiples of ALL three numbers (4,5,6) from the multiples of BOTH numbers (4 and 5) to get our answer: Multiples of ONLY numbers 4 and 5 (excluding 6): 500 - 166 = <span>334</span>