3x^2
+ 2x - 5
- 4 + 7x^2
—————
/combine like terms (3x2 + 7x2, -5 and -4, and 2x is alone so we leave it as it is)
—————
10x^2 + 2x - 9
If you take the square root of a number squared number then they cancel each other out and the number stays the same i.e. √[(4)^2] would equal 4.
In this problem the square root and numbered squared cancel out to leave the problem as -2a.
The solution of this problem is -2a
Answer:
2 cm
Step-by-step explanation:
2 + 7 < 10
sum of two sides of triangle must not small than the third side
The number -1.28 is rational if it is an integer or decimal, so yes it is.
Answer:
Option A is correct.
Step-by-step explanation:
We need to find the product of

We know (a^2-b^2) = (a+b)(a-b)
so, (x^2-16) = (x)^2-(4)^2 = (x-4)(x+4)
2x+8 Taking 2 common from this term:
2x+8 = 2(x+4)
(x^3-2x^2+x) Taking x common from this term
x(x^2-2x+1) = x(x-1)^2 = x(x-1)(x-1)
(x^2+3x-4) factorizing this term
x^2+4x-x-4 = x(x+4)-1(x+4)
= (x-1)(x+4)
Now, Putting these simplified terms in the given equation:

Now cancelling the same terms that are in numerator and denominator

So, Option A is correct.