Get them to have a common denominator. 100 is the common denominator, so change 7/10 and 3/5 to have a denominator of 100. 7/10=70/100 and 3/5=60/100. So from least to greatest it will go 8/100, 3/5, 7/10.
<u>Part 1) </u>To find the measure of ∠A in ∆ABC, use
we know that
In the triangle ABC
Applying the law of sines

in this problem we have

therefore
<u>the answer Part 1) is</u>
Law of Sines
<u>Part 2) </u>To find the length of side HI in ∆HIG, use
we know that
In the triangle HIG
Applying the law of cosines

In this problem we have
g=HI
G=angle Beta
substitute


therefore
<u>the answer Part 2) is</u>
Law of Cosines
<h3>Answer:</h3>
Yes, ΔPʹQʹRʹ is a reflection of ΔPQR over the x-axis
<h3>Explanation:</h3>
The problem statement tells you the transformation is ...
... (x, y) → (x, -y)
Consider the two points (0, 1) and (0, -1). These points are chosen for your consideration because their y-coordinates have opposite signs—just like the points of the transformation above. They are equidistant from the x-axis, one above, and one below. Each is a <em>reflection</em> of the other across the x-axis.
Along with translation and rotation, <em>reflection</em> is a transformation that <em>does not change any distance or angle measures</em>. (That is why these transformations are all called "rigid" transformations: the size and shape of the transformed object do not change.)
An object that has the same length and angle measures before and after transformation <em>is congruent</em> to its transformed self.
So, ... ∆P'Q'R' is a reflection of ∆PQR over the x-axis, and is congruent to ∆PQR.
Answer:
B
Step-by-step explanation:
The pay increases, so it clearly cannot be C or D, and 25% of 12 is 3 because 12/4 = 3, so it would have to be B.