First let's try to find the equation in this form : <span>y = mx + c
The gradient is given 3 . In a line's equation, x's coefficient represents the line's gradient.
So equation of a line with the gradient of 3, would look like this ;
</span>
![y= 3x + c](https://tex.z-dn.net/?f=y%3D%203x%20%2B%20c)
<span>
Now a point that the line passes through is given, (1, 2)
This point's x-coordinate is 1 and y-coordinate is 2.
So we'll plug its x-coordinate value in the equation and also y-coordinate value. So we can solve it.
As you know, </span>
![x=1](https://tex.z-dn.net/?f=x%3D1)
and
![y=2](https://tex.z-dn.net/?f=y%3D2)
![y = 3x + c](https://tex.z-dn.net/?f=y%20%3D%203x%20%2B%20c)
![2\quad =\quad 3\cdot 1+c\\ \\ 2\quad =\quad 3+c\\ \\ 2-3\quad =\quad c\\ \\ -1\quad =\quad c](https://tex.z-dn.net/?f=2%5Cquad%20%3D%5Cquad%203%5Ccdot%201%2Bc%5C%5C%20%5C%5C%202%5Cquad%20%3D%5Cquad%203%2Bc%5C%5C%20%5C%5C%202-3%5Cquad%20%3D%5Cquad%20c%5C%5C%20%5C%5C%20-1%5Cquad%20%3D%5Cquad%20c)
We found c = -1
Also in a line's equation, c is constant and it represents the line's y-intercept
So let's build the line's equation.
![m=3](https://tex.z-dn.net/?f=m%3D3)
and
![c=-1](https://tex.z-dn.net/?f=c%3D-1)
![y= mx + c](https://tex.z-dn.net/?f=y%3D%20mx%20%2B%20c)
![y= 3x -1](https://tex.z-dn.net/?f=y%3D%203x%20-1)
We found the line's equation in this form,
![y= mx + c](https://tex.z-dn.net/?f=y%3D%20mx%20%2B%20c)
Now let's turn it into this form,
![ax + by + c = 0](https://tex.z-dn.net/?f=ax%20%2B%20by%20%2B%20c%20%3D%200)
![y\quad =\quad 3x-1\\ \\ y-3x\quad =\quad -1\\ \\ y-3x+1\quad =\quad 0\\ \\ -3x+y+1\quad =\quad 0](https://tex.z-dn.net/?f=y%5Cquad%20%3D%5Cquad%203x-1%5C%5C%20%5C%5C%20y-3x%5Cquad%20%3D%5Cquad%20-1%5C%5C%20%5C%5C%20y-3x%2B1%5Cquad%20%3D%5Cquad%200%5C%5C%20%5C%5C%20-3x%2By%2B1%5Cquad%20%3D%5Cquad%200)
Final answers,
![\boxed { y\quad =\quad 3x-1 }](https://tex.z-dn.net/?f=%5Cboxed%20%7B%20y%5Cquad%20%3D%5Cquad%203x-1%20%7D%20)
and
![\boxed { -3x+y+1\quad =\quad 0 }](https://tex.z-dn.net/?f=%5Cboxed%20%7B%20-3x%2By%2B1%5Cquad%20%3D%5Cquad%200%20%7D%20)
I hope this was clear enough :)
<span>
</span>