A nice riddle, mathematical riddle.
Assuming a turtle winning means the declared winner is the weaker one actually won over the stronger one. In this context, the turtle winner is the one who has a lesser number of favourable votes.
The given rules for the points are as follows:
1. Point for the first choice must be greater than or equal to that of the second choice.
2. All points must be positive whole numbers.
Let's suppose we have Henry against Tim.
Henry is favourite of the voters and is the leading candidate, according to popular polls.
Tim is an excellent manipulator, sly, and everybody knows this.
On polling day, the vote count came out as follows (in point counts)
Henry Tim
2 1
2 1
2 1
2 1
2 1
2 1
10 1 (Henry's own vote)
1 100 (Tim's own vote)
------------------
17 107 TOTAL POINTS
So Tim the turtle was declared winner of the race, and since everything was according to rule, even a recount of the votes did not change the results.
Be aware, voting by districts (instead of popular votes) also exhibits a similar problem.
All you have to do is write a positive number. let's say 4, then write a positive exponent (that's the tiny number in the right corner of the regular number) and then just write a positive exponent less than 4.
So 4 squared
Answer:
The answer is 6
Step-by-step explanation:
The answer is 6
You can use the identity
cos(x)² +sin(x)² = 1
to find sin(x) from cos(x) or vice versa.
(1/4)² +sin(x)² = 1
sin(x)² = 1 - 1/16
sin(x) = ±(√15)/4
Then the tangent can be computed as the ratio of sine to cosine.
tan(x) = sin(x)/cos(x) = (±(√15)/4)/(1/4)
tan(x) = ±√15
There are two possible answers.
In the first quadrant:
sin(x) = (√15)/4
tan(x) = √15
In the fourth quadrant:
sin(x) = -(√15)/4
tan(x) = -√15