1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kherson [118]
3 years ago
8

The area of a square tile is the same as the area of a rectangle tile that is 18 inches long and 8 inches wide.

Mathematics
1 answer:
allsm [11]3 years ago
5 0

Step-by-step explanation:

Brother Answer is 12 inches

You might be interested in
Paula salió de su casa rumbo al trabajo avanzo 8km al este y 13km al norte. Si hubiera un camino recto desde su casa a su trabaj
zhannawk [14.2K]

Answer:

15.26km

Step-by-step explanation:

Con la informacion de la pregunta e hecho un diagrama de la situacion. Podemos ver en el diagrama que el recorido forma un triángulo rectángulo. Entonces para saber la distancia que recorreria por el camino recto desde su casa a su trabajo tendriamos que calcular el valor de x, que se puede calcular usando el teorema de pitagoras que es el siguiente.

a^{2} + b^{2} = c^{2}

donde a y b son el ancho y el alto del triangulo y el c seria x

8^{2} + 13^{2}  = x^{2}

64 + 169 = x^{2}

233 = x^{2}

15.26 = x

Finalmente, podemos ver que la distancia seria 15.26km

7 0
3 years ago
Kerry invited 23 friends to his pool party. They played a game where everyone had to separate into groups. Each group had the sa
Alex17521 [72]

Answer:

A, C, and E are the answers

Step-by-step explanation:

6 0
2 years ago
Find the limit , picture provided
V125BC [204]

Answer:

d. does not exist

Step-by-step explanation:

The given limits are;

\lim_{x \to 4} f(x) =5, \lim_{x \to 4} g(x) =0 and \lim_{x \to 4} h(x) =-2

We want to find

\lim_{x \to 4} \frac{f}{g}(x)= \lim_{x \to 4} \frac{f(x)}{g(x)}

By the properties of limits, we have;

\lim_{x \to 4} \frac{f}{g}(x)= \frac{\lim_{x \to 4} f(x)}{\lim_{x \to 4} g(x)}

This gives us;

\lim_{x \to 4} \frac{f}{g}(x)= \frac{5}{0}

Division by zero is not possible. Therefore the limit does not exist.

7 0
3 years ago
Find the missing parts of the triangle. Round to the nearest tenth when necessary or to the nearest minute as appropriate.
Katena32 [7]

Answer:

  • A) A = 27.3°, B = 56.1°, C = 96.6°

Step-by-step explanation:

<u>Use the Law of Cosines:</u>

  • A = arccos [(b² + c² - a²)/(2bc)] = arccos [(13.2² + 15.8² - 7.3²)/(2*13.2*15.8)] = 27.3°
  • B = arccos [(a² + c² - b²)/(2ac)] = arccos [(7.3² + 15.8² - 13.2²)/(2*7.3*15.8)] = 56.1°
  • C = 180° - (A + B) = 180° - (27.3° + 56.1°) = 96.6°

Correct choice is A.

3 0
3 years ago
"The sum of a number and 4."
kenny6666 [7]

Answer:

n + 4

Step-by-step explanation:

It´s like a normal sum, but since the number is unknown just put n.

7 0
4 years ago
Read 2 more answers
Other questions:
  • Encik Zulhazim deposited RM8000 in a fixed deposit account at Bank T for 2 years with interest rate of 5% per annum. What is the
    9·1 answer
  • A thermometer at the park shows a reading of 86° Fahrenheit. If the temperature goes over 32° Celsius, Tom must have an extra br
    9·1 answer
  • The number of hours walked varies inversely with the speed of the walker. if it takes sam 12 hours to complete his walking goal
    12·1 answer
  • Which is the best buy?<br>12 tins of fish at K7.80 or 6 tins of fish at K4.20?​
    14·1 answer
  • Solve the system by elimination: <br> -2x + 2y + 3z = 0<br> -2x - y + z = -3 <br> 2x+ 3y + 3z = 5
    13·1 answer
  • Question 8
    11·1 answer
  • I) Domain, ii) x-intercept, iii) y-intercept, iv) vertical asymptote, and v) horizontal asymptote of
    9·1 answer
  • My mom is making me do this and 2 others, which was PAST, I did them but at like 75%,why make me redo them if their PAST
    5·1 answer
  • The area of a semi circle when the radius is 28cm
    7·1 answer
  • The equation y=2x represents a proportional relationship.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!