Answer:
Expected number of hours before the the group exits the building = E[Number of hours] = 3.2 hours
Step-by-step explanation:
Expected value, E(X) is given as
E(X) = Σ xᵢpᵢ
xᵢ = each variable
pᵢ = probability of each variable
Let X represent the number of hours before exiting the building taking each door. Note that D = Door
D | X | P(X)
1 | 3.0 | 0.2
2 | 3.5 | 0.1
3 | 5.0 | 0.2
4 | 2.5 | 0.5
E(X) = (3×0.2) + (3.5×0.1) + (5×0.2) + (2.5×0.5) = 3.2 hours
Hope this Helps!!!
3/4 times 16/9 is equal to 1 1/3.
Answer:
14 feet
Step-by-step explanation:
To calculate the width of the patio, we will use the formula of the perimeter, in the case of the rectangle it has the formula of:
p = 2 * l + 2 * w
Now we know that the total fencing value is $ 976 and that per foot is $ 16
that is, we can calculate the value of the perimeter, like this:
976/16 = 61
We know that the perimeter is 61 feet and that the length is 16.5, therefore it only remains to replace:
61 = 16.5 * 2 + 2 * w
solving for w:
w = (61 - 33) / 2
w = 14
which means that the width of the patio is 14 feet.
I believe you are right :) because they are the same
The formula for the quadratic formula is x (c in this case) = (-b(+/-)√(b²-4ac))/2a
This is used for an equation in standard quadratic form: ax² + bx + c = 0
1.) Put it in the correct form, if not already in it.
Ex. c² + 6c + 8 = 0
2.) Identify each part of the equation:
a = 1 (the leading coefficient), b = 6 (the coefficient in front of the second variable), c = 8
3.) Plug in each variable answer
c = (-6(+/-)√(6²-4(1)(8))/2(1)
4.) Simplify
c = (-6(+/-)√(36-(4*8))/2
c = (-6(+/-)√(36-32))/2
c = (-6(+/-)√(4))/2
c = (-6(+/-)2)/2
*Here, the equation splits in two. It becomes:
c = (-6+2)/2 AND c = (-6-2)/2
*Simplify again:
c = -4/2 AND c = -8/2
c = -2 AND c = -4
The answers c = -2 and c = -4 would solve the given equation.
Hope this helps! :)